Ding Xieping. Pareto Equilibria of Multicriteria Games without Compactness,Continuity and Concavity[J]. Applied Mathematics and Mechanics, 1996, 17(9): 801-808.
Citation: Ding Xieping. Pareto Equilibria of Multicriteria Games without Compactness,Continuity and Concavity[J]. Applied Mathematics and Mechanics, 1996, 17(9): 801-808.

Pareto Equilibria of Multicriteria Games without Compactness,Continuity and Concavity

  • Received Date: 1995-09-06
  • Publish Date: 1996-09-15
  • In this paper.by using a minimax inequality obtained by the author,some existence theorems of Pareto equilibria for multicriteria games without compactness,continuity and concavity are proved in toplogical vector spaces and reflexive Banach spaces.
  • loading
  • [1]
    R.J.Williams,Sufficient conditions for Nash equilibria in N-person games over reflexive Banach spaces,J.Optim.Theory and appl.,30(1980),383-394.
    [2]
    J.Yu,On Nash equilibria in N-person games over reflexive Banach spaces,J.Optirn.Theorv acrd Appl.,73(1992),211-214.
    [3]
    J.C.Yao,Nash equilibria in N-person games with convexity,Appl..Lfath.Zett.,6.5(1992),67-69.
    [4]
    K.K.Tan and J.Yu,New minimax inequality with applications to existence theorems of equilibrium points,J.Optim.Theory and Appl.,82(1994),105-120.
    [5]
    D.Ghose and U.R.Prasad,Solution concepts in two-person multicriteria games,J.Ovtim.Theory and ADUI.,63(1989),167-189.
    [6]
    F.Szidarovszky,M.E.Gershou and L.Duckstein,Techniques forhlultiobjective Decision Making in Svstems Management,Elsevier,Amsterdam(1986).
    [7]
    R.V.Khachatryan,Dynamically stable optimality principle in multicriteria multistep game.Dokl.Akad.Nauk.Arm.,SSR.,86,1(1988),23-26.(in Russian)
    [8]
    S.Y.Wang,An existence theorem of a Pareto equilibrium,Appl..Yfath.Lett.,4,3(1991),61-63.
    [9]
    K.C.Border,Fired Point Theorems with Applications to Economics and Game Theory,Cambridge University Press,Cambridge(1985).
    [10]
    J.X.Zhou and G.Chen,Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities,J.Math.Anal.Appl.,132(1988),213-225.
    [11]
    G.Tian,Generalizations of the FKKM theorem and the Fan minimax inequality with applications to maximal elements,price equilibrium and complementarily,J.Math,Anal.Appl.170(1992),457-471.
    [12]
    X.P.Ding,New H-KKM theorems and their applications to geometric property,coincidence theorems,minimax inequality and maximal elements,Indian J.Pure and Appl.Math.,26,1(1995),1-19.
    [13]
    X.P.Ding,Best approximation and coincidence theorems,J.Sichuan Normal University,18,2(1995),21-29.
    [14]
    Fan Ky,A miximax inequality and applications,Inequalities III,Ed.by O.Shisha Acad.Press,New York(1972),103-113.
    [15]
    G.Allen,Variatiooal inequalities,complementarity problems,and duality theorems,J.Math.Anal.Appl.,58(1977),1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1961) PDF downloads(688) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return