Wang Huaizhong. Element-by-element Matrix decomposition and Step-by-Step Integration Method for Transient Dynamic Problems[J]. Applied Mathematics and Mechanics, 1995, 16(11): 967-972.
Citation: Wang Huaizhong. Element-by-element Matrix decomposition and Step-by-Step Integration Method for Transient Dynamic Problems[J]. Applied Mathematics and Mechanics, 1995, 16(11): 967-972.

Element-by-element Matrix decomposition and Step-by-Step Integration Method for Transient Dynamic Problems

  • Received Date: 1994-07-07
  • Publish Date: 1995-11-15
  • In this paper a general matrix decomposition scheme as well as an element-by-element relaxation algorithm combined with step-by-step integration method is presented for transient dynamic problems thus the finite element method can be free form forming global stiffness matrix global mass matrix as well as solyin large scale sparse equations Theory analysis and numerical results show that the presented matrix decomposition scheme is the optimal one The presented algoithm has else physicalmeaning and can be busily applied to finite element codes.
  • loading
  • [1]
    钱伟长《变分法与有限元》(上),科学出版社(198).
    [2]
    K.J.Bathe,Finite Element Procedures in Engineering Analysis Prentice-Hall Inc.(1982).
    [3]
    康立山,全惠云等编,《数值解高维偏微分方程的分裂法》,上海科学技术出版社(1990).
    [4]
    O.C.Zienkiewicz,Computational Mechanics Today,Int.J.Numer,Methods Eng.34(1992),9-33.
    [5]
    王怀忠、赵毅,加速度为基本变量的逐步积分法,《中国博士后首届学术大会论文集》,国防工业出版社(1993).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1958) PDF downloads(484) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return