Lin Mingsen, Huan Lanjie. Obic Dmain Decomposition for Artificial Compressible Equation[J]. Applied Mathematics and Mechanics, 1995, 16(11): 1037-1041.
Citation:
Lin Mingsen, Huan Lanjie. Obic Dmain Decomposition for Artificial Compressible Equation[J]. Applied Mathematics and Mechanics, 1995, 16(11): 1037-1041.
Lin Mingsen, Huan Lanjie. Obic Dmain Decomposition for Artificial Compressible Equation[J]. Applied Mathematics and Mechanics, 1995, 16(11): 1037-1041.
Citation:
Lin Mingsen, Huan Lanjie. Obic Dmain Decomposition for Artificial Compressible Equation[J]. Applied Mathematics and Mechanics, 1995, 16(11): 1037-1041.
Obic Dmain Decomposition for Artificial Compressible Equation
1.
Dept. of Mechanics, Tianjin Unitersity, Tianjin 300072;
2.
Computing Centre of Sinica, Beijing 100080
Received Date: 1994-12-17
Publish Date:
1995-11-15
Abstract
This paper is a continuation of the domain decomposition method according to thephysics scale proposed in [1] and [2].Starting from systems of ordinary differentialequattons,a solution is decomposed into an outer solution(0)and its boundary layercorrections(BLC)mainly on the fixed boundary.For efficient numerical solution,different equations,different numerical methods and different grids can be suitablychosen for the different scales.This paper also gives the characteristic nature and well-posed boundary condition about artificial compressible equations.Numericalexperiments show that the computational method and the couple process presented inthe paper are effective.
References
[1]
L.C.Huang,J.X.Shen and J.X.Li,Proc,of the 5th Int.Conf on Boundary and Interion Lavers-Compute and Asympt,Methods(1988),524-528.
[2]
黄兰洁,用区域分解法求解不可压N-S方程差分解,《第四届全国计算流体力学会议论文集》(1988),241-245.
[3]
黄兰洁,不可压缩N-S方程的隐式投影法,计算数学,2(1990).
[4]
黄兰洁,《计算流体力学选讲》(讲义).
Relative Articles
[1] BAO Xiaobing, LIU Libin, MAO Zhi. A Posteriori Error Estimation and Adaptive Algorithm for Singularly Perturbed Reaction-Diffusion Equations [J]. Applied Mathematics and Mechanics, 2021, 42(3): 323-330. doi: 10.21656/1000-0887.410103
[2] FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic Solution to a Class of Nonlinear Singular Perturbation Autonomous Differential Systems [J]. Applied Mathematics and Mechanics, 2018, 39(3): 355-363. doi: 10.21656/1000-0887.380110
[3] SHI Juan-rong, MO Jia-qi. Asymptotic Solutions to a Class of Singular Perturbation Burning Models [J]. Applied Mathematics and Mechanics, 2016, 37(7): 691-698. doi: 10.21656/1000-0887.360293
[4] CAI Xin, CAI Dan-lin, WU Rui-qian, XIE Kang-he. High Accurate Non-Equidlstant Method for Singular Perturbation Reaction-Diffusion Problem [J]. Applied Mathematics and Mechanics, 2009, 30(2): 171-178.
[5] YAN Bo, DU Juan, HU Ning, Sekine Hideki. A Domain Decomposition Algorithm With Finite Element-Boundary Element Coupling [J]. Applied Mathematics and Mechanics, 2006, 27(4): 463-469.
[6] LU Shi-ping. Singularly Perturbed Nonlinear Boundary Value Problem for a Kind of Volterra Type Functional Differential Equation [J]. Applied Mathematics and Mechanics, 2003, 24(12): 1276-1284.
[7] G. M. Amiraliyev, Musa ÇakIr, . Numerical Solution of the Singularly Perturbed Problem With Nonlocal Boundary Condition [J]. Applied Mathematics and Mechanics, 2002, 23(7): 673-681.
[8] G. M. Amiraliyev, Hakk Duru. A Uniformly Convergent Finite Difference Method for a Singularly Perturbed Initial Value Problem [J]. Applied Mathematics and Mechanics, 1999, 20(4): 363-370.
[9] Zhou Yali, You Zhefeng, Lin Zongchi. Singular Perturbation of General Boundary Value Problem for Nonlinear Differential Equation System [J]. Applied Mathematics and Mechanics, 1998, 19(6): 497-504.
[10] Yin Zhaoyang. Compensated Compactness Applied to Perturbed Fourth and Sixth Order P.D.E. [J]. Applied Mathematics and Mechanics, 1997, 18(9): 853-858.
[11] Liu Guoqing, Su Yucheng. A Uniformly Convergent Difference Scheme for the Singular Perturbation Problem of a High Order Elliptic Differential Equation [J]. Applied Mathematics and Mechanics, 1996, 17(5): 397-404.
[12] Shi Yuaning, Liu Guangxu. Singular Perturbations for a Class of Boundary Value Problems of Higher Order Nonlinear Differential Equations [J]. Applied Mathematics and Mechanics, 1996, 17(12): 1129-1136.
[13] Kang Sheng-liang. The Singular Perturbation for the Buckling of a Truncated Shallow Spherical Shell with the Large Geometrical Parameter [J]. Applied Mathematics and Mechanics, 1995, 16(5): 431-442.
[14] Lin surong, Lin Zongchi. Asymptotic Solution of a Singularly Perurbed Nonlinear State Regulator Problem [J]. Applied Mathematics and Mechanics, 1995, 16(6): 479-483.
[15] Lin Zong-chi, Lin Su-rong. Singular Perturbation of Initial Value Problem for a Nonlinear Second Order Systems [J]. Applied Mathematics and Mechanics, 1993, 14(2): 95-100.
[16] Sun Xiao-di. A Second Order Uniform Difference Scheme for a Singularly Perturbed Turning Point Problem [J]. Applied Mathematics and Mechanics, 1992, 13(2): 129-133.
[17] Su Yu-cheng, Shen Quan. The Numerical Solution of a Singularly Perturbed Problem for Quasilinear Parabolic Differential Equation [J]. Applied Mathematics and Mechanics, 1992, 13(6): 479-488.
[18] Su Yu-cheng, Shen Quan. The Numerical Solution of a Singularly Perturbed Problem for Semilinear Parabolic Differential Eqnation [J]. Applied Mathematics and Mechanics, 1991, 12(11): 979-988.
[19] Su Yu-chcng, Lin Ping. An Exponentially Fitted Difference Scheme for the Hyperbolic-hyperbolic Singularly Perturbed Initial-Boundary Value Problem [J]. Applied Mathematics and Mechanics, 1991, 12(3): 219-227.
[20] Su Yu-cheng, Liu Guo-qing. Numerical Solution of Singular Perturbation Problems for the Fourth-Order Elliptic Differential Equations [J]. Applied Mathematics and Mechanics, 1991, 12(10): 879-902.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 16.8 % FULLTEXT : 16.8 % META : 82.7 % META : 82.7 % PDF : 0.5 % PDF : 0.5 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 3.0 % 其他 : 3.0 % China : 1.0 % China : 1.0 % Singapore : 0.1 % Singapore : 0.1 % United Kingdom : 0.4 % United Kingdom : 0.4 % 上海 : 0.5 % 上海 : 0.5 % 休斯顿 : 0.1 % 休斯顿 : 0.1 % 北京 : 2.8 % 北京 : 2.8 % 南京 : 0.1 % 南京 : 0.1 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 常州 : 0.1 % 常州 : 0.1 % 张家口 : 2.7 % 张家口 : 2.7 % 杭州 : 0.4 % 杭州 : 0.4 % 汕尾 : 0.3 % 汕尾 : 0.3 % 深圳 : 0.4 % 深圳 : 0.4 % 濮阳 : 0.3 % 濮阳 : 0.3 % 石家庄 : 0.1 % 石家庄 : 0.1 % 芒廷维尤 : 6.7 % 芒廷维尤 : 6.7 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 79.9 % 西宁 : 79.9 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.1 % 郑州 : 0.1 % 阳泉 : 0.1 % 阳泉 : 0.1 % 其他 China Singapore United Kingdom 上海 休斯顿 北京 南京 南宁 哥伦布 常州 张家口 杭州 汕尾 深圳 濮阳 石家庄 芒廷维尤 芝加哥 苏州 西宁 西安 郑州 阳泉