Hao Gang, Zeng Guangwu, Hao Qiang. Plastic Buckling of Stiffened Torispherical Shell[J]. Applied Mathematics and Mechanics, 1995, 16(10): 933-941.
Citation: Hao Gang, Zeng Guangwu, Hao Qiang. Plastic Buckling of Stiffened Torispherical Shell[J]. Applied Mathematics and Mechanics, 1995, 16(10): 933-941.

Plastic Buckling of Stiffened Torispherical Shell

  • Received Date: 1994-12-28
  • Publish Date: 1995-10-15
  • This paper uses the nonlinear prebuckling consisten theory to analyse the plasticbuckling problem of of stiffned torispherical shell under uniform exlernal pressure. Thebuckling equation and energy expressions of the shell are built. the calculation formulais presented Numerical examples show that method in ths paper has betterprecision and the calculating process is very simple.
  • [1]
    D,Bushnell,Computerized Buckling Analysis of Shells,Martinus Nijhoff Publishers,Dordrecht(1985).
    [2]
    力学所板壳组,《加肋圆柱板与圆柱壳》,科学出版社(1983).
    [3]
    郝刚、曾广武,加筋碟形薄壳屈曲试验,华中理工大学学报,22(12)(1995).
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.1 %FULLTEXT: 18.1 %META: 81.3 %META: 81.3 %PDF: 0.7 %PDF: 0.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %China: 0.4 %China: 0.4 %Singapore: 0.5 %Singapore: 0.5 %北京: 3.3 %北京: 3.3 %南宁: 0.1 %南宁: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %山景城: 0.5 %山景城: 0.5 %张家口: 3.6 %张家口: 3.6 %新奥尔良: 0.1 %新奥尔良: 0.1 %杭州: 0.1 %杭州: 0.1 %楚雄: 0.1 %楚雄: 0.1 %洛杉矶: 0.4 %洛杉矶: 0.4 %深圳: 0.4 %深圳: 0.4 %湖州: 0.1 %湖州: 0.1 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %苏州: 0.1 %苏州: 0.1 %西宁: 63.7 %西宁: 63.7 %西安: 0.1 %西安: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaSingapore北京南宁哥伦布山景城张家口新奥尔良杭州楚雄洛杉矶深圳湖州石家庄芒廷维尤苏州西宁西安阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2162) PDF downloads(503) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return