Zhang Yueliang, Qiao Yongfen. Kane’s Equations for Precussion Motion of Variable Mass Nonholonomic Mechanical Systems[J]. Applied Mathematics and Mechanics, 1995, 16(9): 781-790.
Citation:
Zhang Yueliang, Qiao Yongfen. Kane’s Equations for Precussion Motion of Variable Mass Nonholonomic Mechanical Systems[J]. Applied Mathematics and Mechanics, 1995, 16(9): 781-790.
Zhang Yueliang, Qiao Yongfen. Kane’s Equations for Precussion Motion of Variable Mass Nonholonomic Mechanical Systems[J]. Applied Mathematics and Mechanics, 1995, 16(9): 781-790.
Citation:
Zhang Yueliang, Qiao Yongfen. Kane’s Equations for Precussion Motion of Variable Mass Nonholonomic Mechanical Systems[J]. Applied Mathematics and Mechanics, 1995, 16(9): 781-790.
Kane’s Equations for Precussion Motion of Variable Mass Nonholonomic Mechanical Systems
1.
Harbin Engineering University, Harbin 150001;
2.
Northeast Agricultural University, Harbin
Received Date: 1994-12-01
Publish Date:
1995-09-15
Abstract
In this paper,the Kane's equations for the Routh's form of variable massnonholonomic systems are established.and the Kane's equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange's equations for percussion motion and Kane'sequations is obtained,and the application of the new equation is illustrated by an example.
References
[1]
梅凤翔等,咬高等分析力学》,北京理工大学出版社(1991), 321-333.
[2]
T, R, Kane和D, A, Leviason,《动力学理论与应用》,贾书惠、薛克宋译,清华大学出版社(1988).
[3]
Z.M.,Ge,Extended Kane's equations for monholonomic variable mass system,J.Appl, Mech.,48(1982), 429.
[4]
薛纭,有冲力作用时的Kane方程,上海力学,7(1)0986), 33.
[5]
吉林大学数学系编,《数学分析》(上册),人民救育出版社出版(1979), 191-207.
Proportional views