Li Huacan, Yu Xin. Inflation in Ω-Field Cosmology[J]. Applied Mathematics and Mechanics, 1995, 16(7): 577-584.
Citation: Li Huacan, Yu Xin. Inflation in Ω-Field Cosmology[J]. Applied Mathematics and Mechanics, 1995, 16(7): 577-584.

Inflation in Ω-Field Cosmology

  • Received Date: 1994-07-22
  • Publish Date: 1995-07-15
  • In thin paper.we shall apply the Ω-field theory as first proposed by Yu[1] to cosmology.Under the assumption that the spacetime geometry of the Universe isdescribed by the Robertson-Walker metric and the matter temsor consists only of the Ω-field,the Universe is found to follow a de Sitter Expansion.The horizon and flatnes sproblems may thus be explained in a simple and natural way.
  • loading
  • [1]
    Yu Xin,Astrophysics and Space Science 154(1989).321-331.
    [2]
    A.A.Starobinsky.Phys.Lett.,91B(1980).99.
    [3]
    A.H.Guth,Phys.Rev.,D23(1981).347.
    [4]
    A.D.Linde.Phys.Lett.,108B.(1982),389.Phys.Lett.,116B(1982).335.
    [5]
    A.Albrecht and P.J.Phys.Rev.Lett.,48(1982).1220-1223.
    [6]
    A.D.Linde,Rep.Prog.Phys.,47(1984),925.
    [7]
    300 Years of Gravitation,Cambridge University Press(1987).
    [8]
    A.Lapedes,J.Math Phys.,19(1978).2289.
    [9]
    R.Brandenberger and R.Kahn,Phys.Lett.,119B(1982).75.
    [10]
    G.W.Gibbons and S.W.Hawking,Phys.Rev.,D15(1977),2738
    [11]
    R.H.Brandenberger,of Mod.Pho.s.57.1(1985)
    [12]
    R.H.Brandenberger.,Physics of the Early Unirerse,ed.by J.A.Peacon,(1990 ).309-322.
    [13]
    J.R.Gott III,Nature.295(1982).304
    [14]
    Yu Xin.Nonlinear eravito-electrodynamics-An Eintein's dream in the Earth and the Universe,Ed.by W.Schroder,International Association of Geomagnetism and Aeronomy,Germany(1993),473-484.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1881) PDF downloads(404) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return