Zhao Qi, Ye Tianqi. Hybrid Changeable Basis Galerkin Technique for Nonlinear Analysis of Structures[J]. Applied Mathematics and Mechanics, 1995, 16(7): 625-631.
Citation: Zhao Qi, Ye Tianqi. Hybrid Changeable Basis Galerkin Technique for Nonlinear Analysis of Structures[J]. Applied Mathematics and Mechanics, 1995, 16(7): 625-631.

Hybrid Changeable Basis Galerkin Technique for Nonlinear Analysis of Structures

  • Received Date: 1994-06-30
  • Publish Date: 1995-07-15
  • Based on the asynptotical perturbation method and the Galerkin Itechnique.thehybrid changeable basis Galerkin technique is presented for predicting the nonlinear response of structures.By the idea of changeable basis functions first proposed,itgreatly reduces calculation and is easily used in other numerical diseretization techniques,such as finite element method etc.,It appears to have high potential forsolution of nonlinear srtyctyrak oribkrbts.Finally,the effectiveness of this technique isdemonstrate by means of two numerical examples:the large deflection of circularplates objected to uniform normal load and the large deflection of spherical caps under centrally distributed pressures.
  • loading
  • [1]
    A.K.Noor Hybrid analytical teehni UUe for nonlinear analysis of structures,AIAA J.,23(1985).938-946.
    [2]
    J.F.Geer,A hybrid perturbation-Galerhin method for differential equations containing parameters,Appl.Mech.Rev.,42.11(2)(1989)
    [3]
    A.K.Noor,Recent advances in reduction problems for nonlinear problems,Computers and Structures.13(1981).31-44.
    [4]
    A.K.Noor,C.M.Andersen and J.M,Peters,Reduced basis technique for collapse analysis of shell.AIAA J.,19(1981).393-397.
    [5]
    A.K.Noor and J.M.Peters,Bifurcation and post-buckling analysis of laminated composite plates via reduced basis technique,Comp.Meth.Appl.Mach.Eng.,29(1981)271-295.
    [6]
    A.K.Noor and J.M.Peters,MultiPle-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates,Int.J.Num.Meth.Eng.,19(1983).1783-1803.
    [7]
    A.K.Noor and J.M.Peters.Resents adv,mces in reduction methods for instability analysis of structures,Computers and Structure.10(1983),.67-80.
    [8]
    A.K.Noor and J.M.Peters,Reduced basis technidue for nonlinear analysis of structures,.AIAA J.,18(1980),455-462.
    [9]
    A.K.Noor and C.D.Balch.hybrid perturbation Bubnov-Galerkin technique for nonlinear thermal analysis,AIAA J.,22(1984).287-294.
    [10]
    A.K.Noor.C.D.Balch and M.A.Shibut.Reduction methods for nonlinear steady state thermal analysis,Int.J.Num.Meth.Eng.,20(1984),1323-1348.
    [11]
    J.F.Geer and C.M.Anderson,.A hybrid perturbation Galerkin technique with applications to slender body theory.SIAM J.Appl.Meth.,49(1989).344-356.
    [12]
    J.F.Geer and C.M.Anderson,,A hybrid perturbation Galerkin method which combines mutiple expansions.NASA Langley Research Center ICASE Report.89(8)(1989).
    [13]
    石钟慈,样条有限元,计算数学,1(1979),50-72.
    [14]
    钱伟长等.《奇异摄动理论及其在力学中的应用》,科学出版社,北京(1981).
    [15]
    赵琪,叶天麒,杂交可变基Galerkin方法在圆板大挠度问题中的应用,航空学报,A版(已收录).
    [16]
    Zhao Qi and Ye Tianqi,The large deflection of spherical caps under centrally distributed pressures,7th Brazilian Symposium on Piping and Pressure Vessels.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2043) PDF downloads(557) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return