Citation: | Li Hong-mei, Ding Xie-ping. Generallzed Strongly Nonlinear Quasi-Complementarlty Problems[J]. Applied Mathematics and Mechanics, 1994, 15(4): 289-296. |
[1] |
Lemke.C.E.,Bimatrix equilibrium points and mathematical programming,Management Sci.,11(1965),681-689.
|
[2] |
Cottle,R.W.and G.B.Dantzig,Complementarily pivot theory of mathematical programming,Linear Algebra Appl.,1(1968).163-185.
|
[3] |
Karamardian,S..Generalized complementarily problem,J.Oprim Tlreorv Appl.,8(1971),161-168.
|
[4] |
Noor,M.A.,On the nonlinear complementarily problem,J.Math.,Anal.,Appl,123(1987),455-460.
|
[5] |
Chang,S.S.and N.J.Huang.Generalized mullivalued implicit complementarily problem in Hilbert space,Math.Japanica.36.6(1991)1093-1100.
|
[6] |
丁协平,广义强非线性隐补问题解的存在性及迭代法,四川师范大学学报16,(4)(1993),30-36.
|
[7] |
Noor,M.A.,General quasi-complementarily problems,Math.Japanica.36,1(1991).113-119.
|
[8] |
Kinderlehrar,D.and G.Stampacchia,An Introduction to Variatinal Inequalities and Their Applications Acad.Press,New York(1980).
|
[9] |
Noor,M.A.,An iterative scheme for a class of quasi-variational inequalities,J.Math.Anal.Appl.,110(1985),463-468.
|
[10] |
Nadler,Jr.,S.B.,Multivalued contraction mappings,Pacific J.Math.,30(1969),475-488.
|
[11] |
Ishikawa,S.,Fixed points by a new iterative method.Proc.Amer.Math.Soc.,44(1974).147-150.
|