Zhou Zhi-hu. Solutions of the General n-th Order Variable Coefficients Linear Difference Equation[J]. Applied Mathematics and Mechanics, 1994, 15(3): 221-231.
Citation:
Zhou Zhi-hu. Solutions of the General n -th Order Variable Coefficients Linear Difference Equation[J]. Applied Mathematics and Mechanics, 1994, 15(3): 221-231.
Zhou Zhi-hu. Solutions of the General n-th Order Variable Coefficients Linear Difference Equation[J]. Applied Mathematics and Mechanics, 1994, 15(3): 221-231.
Citation:
Zhou Zhi-hu. Solutions of the General n -th Order Variable Coefficients Linear Difference Equation[J]. Applied Mathematics and Mechanics, 1994, 15(3): 221-231.
Solutions of the General n -th Order Variable Coefficients Linear Difference Equation
Received Date: 1992-10-12
Publish Date:
1994-03-15
Abstract
In this paper.variable operator and its product with shifting operator are studied.The product of power series of shifting operator with variable coefficient is defined andits convergence is proved under Mikusinski's sequence convergence.After turning ageneral variable coefficient linear difference equation of the n-th order wichi is turned into a set of operatorequations.we can obtain the solutions of the general n-theth order variable coefficientlinear difference equation.
References
[1]
Mikusi#324;ski.Oprotional Calculus,Pergaman Press,sth.ed.,New York(1959).
[2]
Qiu Lian-rong,A direct method of operational calculus(I).Acfa Mathematia Scientia.2(4)(1982).389-402.
[3]
周之虎,关于《算符演算》中移动算符级数的一点注记,数学的实践与认识,(4)(1990),90-92.
Relative Articles
[1] OUYANG Baiping. Nonexistence of Global Solutions to Semilinear Moore-Gibson-Thompson Equations With Space-Dependent Coefficients and Source Terms [J]. Applied Mathematics and Mechanics, 2022, 43(3): 353-362. doi: 10.21656/1000-0887.420094
[2] LIU Mian, CHENG Hao, SHI Chengxin. Variational Regularization of the Inverse Problem of a Class of Nonlinear Time-Fractional Diffusion Equations [J]. Applied Mathematics and Mechanics, 2022, 43(3): 341-352. doi: 10.21656/1000-0887.420168
[3] LI Yuanfei, XIAO Shengzhong, CHEN Xuejiao. Existence and Blow-Up Phenomena of Solutions to Heat Equations With Variable Coefficients Under Nonlinear Boundary Conditions [J]. Applied Mathematics and Mechanics, 2021, 42(1): 92-101. doi: 10.21656/1000-0887.410091
[4] GUO Jin-li. Difference Equation Approach of Statistical Mechanics of Complex Networks [J]. Applied Mathematics and Mechanics, 2009, 30(8): 997-1002. doi: 10.3879/j.issn.1000-0887.2009.08.013
[5] WANG De-ming. Difference Inversion Model of a Wave Equation [J]. Applied Mathematics and Mechanics, 2008, 29(3): 325-330.
[6] XU Gui-qiong, LI Zhi-bin. Explicit Solutions to the Coupled KdV Equations with Variable Coefficients [J]. Applied Mathematics and Mechanics, 2005, 26(1): 92-98.
[7] CHEN Rong, ZHENG Hai-tao, XUE Song-tao, TANG He-sheng. Analysis on Impact Responses of an Unrestrained Planar Frame Structure(Ⅱ)—Numerical Example Analysis [J]. Applied Mathematics and Mechanics, 2005, 26(11): 1323-1327.
[8] Hani I. Siyyam. An Accurate Solution of the Poisson Equation by the Finite Difference-Chebyshev Tau Method [J]. Applied Mathematics and Mechanics, 2001, 22(8): 834-838.
[9] HE Tian-lan. Bifurcations of Invariant Curves of a Difference Equation [J]. Applied Mathematics and Mechanics, 2001, 22(9): 988-996.
[10] Zhang Jian-hai, Li Yong-nian, Chen Da-peng. The Generation of Non-Linear Stiffness Matrix of Triangle Element when Considering Both the Bending and in-Plane Membrane Forces [J]. Applied Mathematics and Mechanics, 1994, 15(5): 399-408.
[11] zhou Zhi-hu. Mikusiński’s Operators Solution of Three-Order Linear Difference Equation with Variable Coefficients [J]. Applied Mathematics and Mechanics, 1994, 15(1): 69-76.
[12] Huang Ping, Dong Zheng-zhu. Numerical Residual Elimination Method of Finite Differential Equations [J]. Applied Mathematics and Mechanics, 1993, 14(2): 173-179.
[13] Lu De-yuan, Liao Zong-huang. Instability of Solution For the Fourth Order linear Differential Equation with Varied Coefficient [J]. Applied Mathematics and Mechanics, 1993, 14(5): 455-469.
[14] Loo wen-da, Yang Zheng-wen. Finite Layer Analysis for Semi-Infinite Soils(Ⅱ)——Special Cases and Numerical Examples [J]. Applied Mathematics and Mechanics, 1992, 13(11): 945-950.
[15] Su Yu-cheng, Zhang You-yu. Difference Scheme for an Initial-Boundary Value Problem for Linear Coefficient-Varied Parabolic Differential Equation with a Nonsmooth Boundary Layer Function [J]. Applied Mathematics and Mechanics, 1992, 13(4): 279-286.
[16] Wu Chi-guang, Su Yu-cheng, Sun Zhi-zhong. Asymptotic Method for Singular Perturbation Problem of Ordinary Difference Equations [J]. Applied Mathematics and Mechanics, 1989, 10(3): 211-220.
[17] Ji Zhen-yi, Ye Kai-yuan. Exact Analytic Method for Solving Variable Coefficient Differential Equation [J]. Applied Mathematics and Mechanics, 1989, 10(10): 841-852.
[18] Wu Chi-kuang. Asymptotic Solution for Singular Perturbation Problems of Difference Equation [J]. Applied Mathematics and Mechanics, 1989, 10(12): 1033-1039.
[19] Xu Jun-tao. Singular Perturbation Solution of Boundary-Value Problem for a Second-Order Differential-Difference Equation [J]. Applied Mathematics and Mechanics, 1988, 9(7): 629-640.
[20] Liao Zong-huang, Lu De-yuan. Instability of Solution for the Third Order Linear Differential Equation with Varied Coefficient [J]. Applied Mathematics and Mechanics, 1988, 9(10): 909-923.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 18.7 % FULLTEXT : 18.7 % META : 80.8 % META : 80.8 % PDF : 0.5 % PDF : 0.5 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 5.4 % 其他 : 5.4 % 其他 : 0.1 % 其他 : 0.1 % China : 0.6 % China : 0.6 % Columbia : 0.1 % Columbia : 0.1 % 上海 : 0.6 % 上海 : 0.6 % 乌鲁木齐 : 0.1 % 乌鲁木齐 : 0.1 % 北京 : 0.9 % 北京 : 0.9 % 南京 : 0.1 % 南京 : 0.1 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.1 % 台州 : 0.1 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 墨尔本 : 0.1 % 墨尔本 : 0.1 % 广州 : 0.2 % 广州 : 0.2 % 张家口 : 3.9 % 张家口 : 3.9 % 扬州 : 0.1 % 扬州 : 0.1 % 拉法叶 : 0.1 % 拉法叶 : 0.1 % 无锡 : 0.3 % 无锡 : 0.3 % 昆明 : 0.1 % 昆明 : 0.1 % 杭州 : 0.4 % 杭州 : 0.4 % 海口 : 0.1 % 海口 : 0.1 % 深圳 : 0.2 % 深圳 : 0.2 % 石家庄 : 0.8 % 石家庄 : 0.8 % 秦皇岛 : 0.1 % 秦皇岛 : 0.1 % 红河 : 0.2 % 红河 : 0.2 % 芒廷维尤 : 8.5 % 芒廷维尤 : 8.5 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 75.5 % 西宁 : 75.5 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.8 % 郑州 : 0.8 % 长沙 : 0.1 % 长沙 : 0.1 % 香港 : 0.1 % 香港 : 0.1 % 香港特别行政区 : 0.2 % 香港特别行政区 : 0.2 % 其他 其他 China Columbia 上海 乌鲁木齐 北京 南京 南宁 台州 哥伦布 墨尔本 广州 张家口 扬州 拉法叶 无锡 昆明 杭州 海口 深圳 石家庄 秦皇岛 红河 芒廷维尤 苏州 西宁 西安 郑州 长沙 香港 香港特别行政区