Deng Chang-gen. The Activation Method for Discretized Conservative Nonlinear Stability Problems with Multiple Parameter and State Variables[J]. Applied Mathematics and Mechanics, 1993, 14(10): 873-881.
Citation:
Deng Chang-gen. The Activation Method for Discretized Conservative Nonlinear Stability Problems with Multiple Parameter and State Variables[J]. Applied Mathematics and Mechanics, 1993, 14(10): 873-881.
Deng Chang-gen. The Activation Method for Discretized Conservative Nonlinear Stability Problems with Multiple Parameter and State Variables[J]. Applied Mathematics and Mechanics, 1993, 14(10): 873-881.
Citation:
Deng Chang-gen. The Activation Method for Discretized Conservative Nonlinear Stability Problems with Multiple Parameter and State Variables[J]. Applied Mathematics and Mechanics, 1993, 14(10): 873-881.
For nonlinear stability problems of discretized conservative systems with multiple parameter variables and multiple state variables, the activation method is put forward, by which activated potential functions and activated equilibrium equations are derived. The activation method is the improvement and enhancement of Liapunov-Schmidt method in elastic stability theory. It is more generalized and more normalized than conventional perturbation methods. The activated potential functions may be transformed into normalized catastrophe potential functions. The activated equilibrium equations may be treated as bifurcation equations. The researches in this paper will motivate the combination of elastic stability theory with catastrophe theory and bifurcation theory.