Xie Liu-hui. The Application of the Asymptotic Method to a Class of Strongly Nonlinear Systems[J]. Applied Mathematics and Mechanics, 1993, 14(9): 823-828.
Citation: Xie Liu-hui. The Application of the Asymptotic Method to a Class of Strongly Nonlinear Systems[J]. Applied Mathematics and Mechanics, 1993, 14(9): 823-828.

The Application of the Asymptotic Method to a Class of Strongly Nonlinear Systems

  • Received Date: 1992-02-08
  • Publish Date: 1993-09-15
  • In this paper, according to the form of the asymptotic solution of papers [1,2], the asymptotic method is extended to the following a class of more general strong nonlinear vibration systems where g and f are the nonlinear analytical-functions of x and , and ε>0 is a small parameter. We assume that the derivative system corresponding to ε=0 has periodic solution. The recurrence equations of the asymptotic solution for the system(0.1) are deduced in this paper, and they are applied to practical examples.
  • loading
  • [1]
    Li Li(李骊),The periodic solution of quasi-conservative system,Proc.Int.conf.Nonl.Mech.Beijing Science Press,(1985).
    [2]
    徐兆,非线性力学中的一种新的渐近方法,力学学报,17(3) (1985),266-271.
    [3]
    戴世强、庄峰青,一类非线性振动系统的渐近解,中国科学(A辑).1,(1986),34-40.
    [4]
    Villar,G.and F.Zanolin,Some remarks on non-conservative ascillatory systems with poriodi solutions,Int,1. Non-linear Mech,23(11)(1988),1-7.
    [5]
    舒仲周,《运动稳定性》,西南交通大学出版社(1989),168-172.
    [6]
    黄安基,非线性保守系统的几种形式,第五届全国铁路高校理论力学教学讨论会,长沙(1986).
    [7]
    戴德戎、陈建彪,强非线性振动系统的渐近解法,力学学报.22(2)(1988),206-212.
    [8]
    曹登庆,强非线性振动方程的渐近分析,西南交通大学学报,(1)(1988),40-51.
    [9]
    戴世强,强非浅性振子的渐近分析.应用数学与力学.6(5)(1985),395-400.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2263) PDF downloads(480) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return