Cao Jin-de, Li Qiong. Bifurcations of Periodic Solutions for Plane Mappings[J]. Applied Mathematics and Mechanics, 1993, 14(9): 835-840.
Citation: Cao Jin-de, Li Qiong. Bifurcations of Periodic Solutions for Plane Mappings[J]. Applied Mathematics and Mechanics, 1993, 14(9): 835-840.

Bifurcations of Periodic Solutions for Plane Mappings

  • Received Date: 1990-10-19
  • Publish Date: 1993-09-15
  • In this paper, using some techniques, we prove that there exists the regular homodinic point for Taylor mapping with 4<A≤1.5π and motion of bouncing ball with 4<r≤1.5π. This result implies that the corresponding systems have infinitely many distinct periodic points.
  • loading
  • [1]
    Devaney,R.L.,Homoclinic bifurcations and the area-conserving henon mapping,J.Diff.Equs.,51(1984).254-266.
    [2]
    Churchill,R.and D.Rod,Pathology in dynamical system III,analystic hamiltons,J.Diff.Equs.,37(1980),23-28.
    [3]
    朱思铭等,全国动力系统及其应用学术讨i}会交流资料(杭州),(1988).
    [4]
    Guckenheimer,J.and P.Holmes,Nonlinear Oscillations,Dynamical Systems and Bifurcation of Vector Fields,Springer-Verlag(1983).
    [5]
    孙义隧和C,Frveshite.二维保面积映射的Kolmogorov嫡,中国科学(A),4(1982),357-363.
    [6]
    李继彬.《浑纯与Melnikov方法》,重庆大学出版社,重庆(1989).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1853) PDF downloads(553) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return