Citation: | Zhang Shi-sheng. Some Existence Theorems of Common and Coincidence Solutions for a Class of Functional Equations Arising in Dynamic Programming[J]. Applied Mathematics and Mechanics, 1991, 12(1): 31-37. |
[1] |
Bellman R. and E. S. Lee, Functional equations in dynamic programming, Aegoations Math.,17(1978). 1-18.
|
[2] |
Wang Chung-lie, The principle and models of dynamic programming (Ⅱ), J. Math Anal. Appl.,135(1988). 268-283.
|
[3] |
wang Chung-lie, The principle and models of dynamic programming(Ⅲ),J. Math. Anal.Appl., 135(1988). 284-296.
|
[4] |
Wang Chung-lie,Theprinciple and models of dynamic programming (IV), J. Math Anal. Appl.,137(1989), 148-160.
|
[5] |
Wang Chung-lie, The principle and models ofdynamic programming (V), J. Math. Anal. Appl.137 (1989), 161-167.
|
[6] |
Bhakta. P. C. and Sumitra Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math.,Anal. Appl. 98(1984), 348-366
|
[7] |
Baskaran, R. and P. V. Subrahmanyam, A note on the solution of a class of functional equations, Applicable Artalosis, 22(1986). 235-241.
|
[8] |
张石生,《不动点理论及应用》,重庆出版社(1984).
|
[9] |
Chang Shih-sen (Zhang Shi-Sheng), On common fixed point theorem for a family of Φ-contraction mappings, Math. Japonica, 29(1984), 527-536.
|
[10] |
Zhang Shi-sheng, Fixed point theorems for generalized Meir-Keeler type mappings, J. Sichuan Univ..Nutural Sci. Edition. 2(1983), 17-23.
|