Yeh Kai-yuan, Ji Zhen-yi. Exact Finite Element Method[J]. Applied Mathematics and Mechanics, 1990, 11(11): 937-946.
Citation: Yeh Kai-yuan, Ji Zhen-yi. Exact Finite Element Method[J]. Applied Mathematics and Mechanics, 1990, 11(11): 937-946.

Exact Finite Element Method

  • Received Date: 1990-02-22
  • Publish Date: 1990-11-15
  • In this paper, a new method, exact element method for constructing finite element, is presented.It can be applied to solve nonpositive definite or positive definite partial differential equation with arbitrary variable coefficient under arbitrary boundary condition.Its convergence is proved and its united formula for solving partial differential equation is given.By the present method, a noncompatible element can be obtained and the compatibility conditions between elements can be treated very easily.Comparing the exact element method with the general finite element method with the same degrees of freedom, the high convergence rate of the high order derivatives of solution can be obtained.Three numerical examples are given at the end of this paper, which indicate all results can converge to exact solution and have higher numerical precision.
  • loading
  • [1]
    Zienkiewicz,O.C.,The Finite Element Method,McGraw-Hill.Third Edition(1977).
    [2]
    叶开沅,非均匀变厚度弹性力学的若干问题的一般解,Ⅳ.非均匀变厚度梁的弯曲,稳定性和自由振动,兰州大学学报力学专号,1 (1979), 133-157.
    [3]
    纪振义,矩阵迁移法收敛性的条件及其证明,工程力学,5, 3 (1988), 20-29.
    [4]
    纪振义、叶开沅,任意变系数微分方程的精确解析法,应用数学和力学,10, 10 (1989), 841-851.
    [5]
    Hood,P.,Frontal solution program for unsymmetric matrices,Int.J Num.Meth.Engng.,10,(1976),377-379.
    [6]
    Timoshenko,S.,and S.Woinowsky-krieger,Theory of Plate and Shell.McGraw-Hill Book Company.Second Edition(1959)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2049) PDF downloads(501) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return