Citation: | Zhang Xiang. Boundary and Interior Layer Behavior for Singularly Perturbed Vector Problem[J]. Applied Mathematics and Mechanics, 1990, 11(11): 999-1005. |
[1] |
莫嘉琪,用微分不等式对二阶拟线性方程奇摄动解的估计,数学研究与评论,.(1988), 86-91.
|
[2] |
Hooves.F. A., Effective characterization of the asymptotic behavior of solutions of singularly perturbed boundary value problem, SIAM. J. Appl. Mcrth.,30,(1976), 296-305.
|
[3] |
Hooves, F.A., Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems. SIAM. J. Math:. Anal., 13, 1(1982),6l-82.
|
[4] |
Lin Zhong-chi(林宗池), Sorne estimations of solution of nonlinear boundary value problem for second order systems, 数学物理学报,7, 2 (1987), 229-259.
|
[5] |
Lin Zhong-chi(林宗池), The higher order approximation of solution of quasilinear second order systems for singular perturbation, Chin. Ann. of Math., 8B, 3(1987), 357-363.
|
[6] |
Chang, G. W., Diagonalization method for a vector boundary value problem of singular perturbation type, J. Math. Anal. Appl.,48(1974), 652-665.
|
[7] |
Kelley, W.G.Existence and uniqueness of solutions for vector problems containing small parameters. J. Math. Anal. 4pp1.,131(1988), 295-312
|
[8] |
Lan, Chin-chin, Boundary value problem for second and third order differential equations,.J. Diff.Equs, 18, 2(1975), 258-274.
|
[9] |
刘光旭,关于奇摄动拟线性系统,应用数学和力学,8 1 (1987), 987-978.
|