Loo Wen-da. Doubly Curved Shallow Shells with the Rectangular Bases Elasticaily Supported by Edge Arch Beams and Tie-Rods (Ⅱ)[J]. Applied Mathematics and Mechanics, 1981, 2(1): 75-95.
Citation: Wang Hu Wang, Tsun-kuei. A Donnell Type Theory for Finite Deflection of Stiffened Thin Conical Shells Composed of Composite Materials[J]. Applied Mathematics and Mechanics, 1990, 11(9): 805-816.

A Donnell Type Theory for Finite Deflection of Stiffened Thin Conical Shells Composed of Composite Materials

  • Received Date: 1989-04-21
  • Publish Date: 1990-09-15
  • A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.
  • [1]
    Pflüger,A.,Stabilit?t dünner Kegelschalen,Ing.Archiv.,8,3(1937),151-172.
    [2]
    Seide,P.,A survey of buckling theory and experiment for circular conical shells of constant thickness,NASA TN D-1510,401-426.
    [3]
    Fung,Y.C.and E.E.Sechler,Instability of thin elastic shells,Structural Mechanics(1960),115-168.
    [4]
    Amiro,I.Ya and V.A.Zarutskü,Stability of ribbed shells,Soviet Applied Mechanics,May(1984),925-940.
    [5]
    Tong Li-yong and Wang Tsun-kuei,Axisymmetric buckling of laminated composites conical shells under axial compression,Proceedings of International Conference on Composite Materials and Structures,Madras,India,Jan.6-9(1988).
    [6]
    贺益波、王俊奎,在外压作用下复合材料圆锥壳失稳的初步研究,第五届全国复合材料学术会议论文集(下册),西安(1888, 11), 940-947.
    [7]
    Wang Hu and Wang Tsun-kuei,Snap-buckling of thin shallow conical shells,Proceedings of International Conference on Applied Mechanics,Beijing,China(1989).
    [8]
    Hoff,N.J.,The circular conical shells under arbitrary loads,Journal of Applied Mechanics,77(Dec.1955),557-562.
    [9]
    Seide,P.,A Donnell-type theory for asymmetrical bending and buckling of thin conical shells,Journal of Applied Mechanics,24,4(Dec.1957),547-552.
    [10]
    Singer,J.,Donnell-type equations for bending and buckling of orthotropic conical shells,Journal of Applied Mechanics,30,2(June 1963),303-305.
    [11]
    赵金德,锥形壳体的弹性稳定性,航空学报,5, 1 (1984), 37-45.
    [12]
    孙博华,两种类型夹层锥壳的位移型统一理论及应用(上),应用力学学报,5, 1 (1987), 79-89.
    [13]
    Jones,R.M.,Mechanics of Composite Materials,Scripta Book Company(1975).
    [14]
    蒋咏秋,纤维增强复合材料层合圆柱壳的优化设计,复合材料学报,2, 3.〔1985),13-22
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.4 %FULLTEXT: 16.4 %META: 82.5 %META: 82.5 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %China: 0.9 %China: 0.9 %Iran (ISLAMIC Republic Of): 0.4 %Iran (ISLAMIC Republic Of): 0.4 %Seattle: 0.1 %Seattle: 0.1 %Singapore: 0.4 %Singapore: 0.4 %上海: 0.3 %上海: 0.3 %上饶: 0.1 %上饶: 0.1 %丽水: 0.1 %丽水: 0.1 %北京: 1.7 %北京: 1.7 %南宁: 0.1 %南宁: 0.1 %台州: 0.1 %台州: 0.1 %张家口: 4.1 %张家口: 4.1 %扬州: 0.1 %扬州: 0.1 %杭州: 0.1 %杭州: 0.1 %洛杉矶: 0.5 %洛杉矶: 0.5 %济南: 0.8 %济南: 0.8 %深圳: 0.4 %深圳: 0.4 %湖州: 0.1 %湖州: 0.1 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 7.9 %芒廷维尤: 7.9 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.1 %苏州: 0.1 %衢州: 1.3 %衢州: 1.3 %西宁: 71.8 %西宁: 71.8 %西安: 0.5 %西安: 0.5 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaIran (ISLAMIC Republic Of)SeattleSingapore上海上饶丽水北京南宁台州张家口扬州杭州洛杉矶济南深圳湖州石家庄芒廷维尤芝加哥苏州衢州西宁西安重庆长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2090) PDF downloads(877) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return