LIU Ying, LIU Kai-xin. Characteristic Analysis for Stress Wave Propagation in Transversely Isotropic Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2004, 25(6): 599-606.
Citation: LIU Ying, LIU Kai-xin. Characteristic Analysis for Stress Wave Propagation in Transversely Isotropic Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2004, 25(6): 599-606.

Characteristic Analysis for Stress Wave Propagation in Transversely Isotropic Fluid-Saturated Porous Media

  • Received Date: 2002-12-03
  • Rev Recd Date: 2003-11-18
  • Publish Date: 2004-06-15
  • According to generalized characteristic theory, a characteristic analysis for stress wave propagation in transversely isotropic fluid-saturated porous media was performed. The characteristic differential equations and compatibility relations along bicharacteristics were deduced and the analytical expressions for wave surfaces were obtained. The characteristic and shapes of the velocity surfaces and wave surfaces in the transversely isotropic fluid-saturated porous media were discussed in detail. The results also show that the characteristic equations for stress waves in pure solids are particular cases of the characteristic equations for fluid-saturated porous media.
  • loading
  • [1]
    Ting T C T. Characteristic forms of differential equations for wave propagation in nonlinear media[J].J Appl Mech,1981,48(4):743—748. doi: 10.1115/1.3157726
    [2]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅰ:Low frequency range[J].J Acoust Soc Am,1956,28(2):168—178. doi: 10.1121/1.1908239
    [3]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅱ:High frequency range[J].J Acoust Soc Am,1956,28(2):179—191. doi: 10.1121/1.1908241
    [4]
    Biot M A. Mechanics of deformation and acoustic propagation in porous dissipative media[J].J Appl Phys,1962,33(4):1482—1498. doi: 10.1063/1.1728759
    [5]
    Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J].J Acoust Soc Am, 1962,34(9):1254—1264. doi: 10.1121/1.1918315
    [6]
    Plona T J. Observation of a second bulk compressional wave in porous medium at ultrasonic frequencies[J].Appl Phys Lett,1980,36(4):259—261. doi: 10.1063/1.91445
    [7]
    Auriault J L, Borne L,Chambon R. Dynamics of porous saturated media, checking of the generalized law of Darcy[J].J Acoust Soc Am,1985,77(5):1641—1950. doi: 10.1121/1.391962
    [8]
    Johnson D L. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J].J Fluid Mech,1987,176(3):379—402. doi: 10.1017/S0022112087000727
    [9]
    Schmitt P D. Acoustic multipole logging in transversely isotropic poroelastic formation[J].J Acoust Soc Am,1989,86(6):2397—2421. doi: 10.1121/1.398448
    [10]
    Sharma M D,Gogna M L. Wave propagation in anisotropic liquid-saturated porous solids[J].J Acoust Soc Am,1991,90(2):1068—1073. doi: 10.1121/1.402295
    [11]
    Liu Y, Liu K,Tanimura S. Wave propagation in transversely isotropic fluid-saturated poroelastic media[J].JSME International Journal,2002,45(3): 348—355. doi: 10.1299/jsmea.45.348
    [12]
    Simon B R,Zienkiewicz O C,Paul D K. An analytical solution for the transient response of saturated porous elastic solids[J].Intel J Numer Anal Mat,1984,8(4):381—398. doi: 10.1002/nag.1610080406
    [13]
    José M Carcione. Wave propagation in anisotropic, saturated porous media: plane-wave theory and numerical simulation[J].J Acoust Soc Am,1996,99(5): 2665—2666.
    [14]
    丁启财. 固体中的非线性波[M]. 北京:中国友谊出版社,1985.
    [15]
    Courant R,Hilbert D. Methods of Mathematical Physics,Ⅱ[M].New York:Wiley-Interscience,1962.
    [16]
    Moon F C. Wave surfaces due to impact on anisotropic plates[J].J Compos Mater,1972,6(1):62—79. doi: 10.1177/002199837200600106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2791) PDF downloads(722) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return