Citation: | Chu Wen-chang. On the Lattice Path Method in Convolution Type Combinatorial ldentities(Ⅱ)——The Weighted Counting Function Method on Lattice Paths[J]. Applied Mathematics and Mechanics, 1989, 10(12): 1071-1075. |
[1] |
Andrews,G.E.,The Theory of Partitions,Addison-Wesley,London(1976).
|
[2] |
Bender,E.A.,A binomial q-Vandermonde convolution,Discrete Math.,1(1971), 115-119.
|
[3] |
Carlilz,L.,A note on q-Eulerian numbers,J.Comb.Th(A),25(1978),90-94.
|
[4] |
Foukles,H.O.,A non-recursive Combinatorial rule for Eulerian numbers,J.Comb.Th(A), 22(1977),246-248.
|
[5] |
Polya,G.,On the number of certain lattice polytopes,J.Comb.Th.,6(1969),102-105.
|
[6] |
Sulanke,R.A.,A generalized q-Vandermonde convolution,J.Comb.Th(A),31(1981), 33-42.
|
[7] |
Sulanke,R.A.,q-counting n-dimensional lattice paths,J.Comb.Th(A),33(1982), 135-146.
|
[8] |
Zeilberger,D.,A lattice walk approach to the "inv" and "maj" q-counting of multiset permutations,J.Math.Anal,and Appl.,74(1980),192-199.
|
[9] |
Niederhausen,H.,Linear recurrences under side conditions,Europ.J.Combinatorics,1(1980),353-368.
|
[10] |
初文昌,关于卷积型组合恒等式的格路方法(I)—一族Lebesque-Stieltjes积分恒等式,东北数学.4.2 (1988).233-240.
|