Zhang Peng. The Analytical Solution for Helmholtz Boundary Problem in Non Horizontally Stratified Domains[J]. Applied Mathematics and Mechanics, 1989, 10(12): 1077-1088.
Citation: Zhang Peng. The Analytical Solution for Helmholtz Boundary Problem in Non Horizontally Stratified Domains[J]. Applied Mathematics and Mechanics, 1989, 10(12): 1077-1088.

The Analytical Solution for Helmholtz Boundary Problem in Non Horizontally Stratified Domains

  • Received Date: 1988-08-22
  • Publish Date: 1989-12-15
  • There are N domains Dj(j=0,1,...,N-1) of different physical parameters in the whole space and their interfaces Sj,i+1 are non-horizontally smooth curved surfaces. The following boundary problem is called Hclinholiz boundary problem:
    2H(j)+KjH(j)=0 (j=0,1,…,N-1)
    (H(0)-H(1))S0.1=δ(S) (δ(S):generalized function)
    (H(1)-H(i+1))Sj,j+1=0 (j=0,1,…,N-2)
    The analytical solution of the above problem is given in this paper.
  • loading
  • [1]
    Голузин Г.М.,Геомеmрuческая Теорuя Функчuu Комnлелсно Переменноiо,Гостехиздат(1952)
    [2]
    Векуа И.Н.,Нобые Меmобы Рещенuя Злunmuческuх Урабненuu,Гпстехиздат(1948)
    [3]
    Мусхелишвили Н.И.,Сuнчмярные Инmеiралыные Урабненuя,Физматтнз(1962)
    [4]
    Gilbert,R.P.,Function Theoretic Methods in Partial Differential Equation,The Academic Press(1969).
    [5]
    路见可,《解析画数边值问题》,上海科学技术出版社(1987).
    [6]
    Conway,John B.,Function of One Comples Variable,2nd ed.,Springer-Verlag Press,New York(1978).
    [7]
    Wait J.R.,Fields of a line current source over a stratified conductor,Appl.Sci.Res.,Sec.B.,3(1953),1-15.
    [8]
    Gordon,A.N.,The field indueed by an oscillating magnetic dipole outside a semi-infinite conductor,Mech.and App.Math.,4(1951),106-115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1845) PDF downloads(433) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return