Citation: | Wu Qing-song. Reconstruction of Part of an Actual Blast-Wave Flow Field to Agree with Experimental Data by Using Numerical Method with High Identification[J]. Applied Mathematics and Mechanics, 1989, 10(10): 881-887. |
[1] |
Makino,R.C.and R.E.Shear,Unsteady spherical flow behind a known shock line,BRL Report,No,1154(1961).
|
[2] |
Dewey,J.M.and D.J.McMillin,The properties of a blast wave produced by large-scale detonable gas explosion,Proc.7th Inter.Symp.Mil.Appl.of Blast Simul.,1(1981),6.6-1-6.6-18.
|
[3] |
Celmins,A.,Reconstruction of a blast field from selected pressure observation,Proc.7th Inter.Symp.Mil.Appl.of Blast.Simul.1(1981),2.5-1-2.5-17.
|
[4] |
Lau,S.C.M.and J.J.Gottlieb,Numerical reconstruction of part of an actual blast-wave flow field to agree with available experimental data,UTIAS Tech.Note,251(1984).
|
[5] |
Ben-Artzi,M.and J.Falcovitz,An upwind second-order scheme for compressible duct flows,SIAM J.Sci.Stat.Comput.7(1986),744.
|
[6] |
Courant,R and K.O.Friedrichs,Supersonic Flow and Shock Waves,Interscience Publishers,New York(1984).
|
[7] |
Van Leer,B.,Towards the ultimate conservative difference scheme,V.A.second-order sequel to Godunov's method,J.Comput.Phys.,32(1979),101-136.
|
[8] |
Sadek,H.S.I,and J.J.Gottlieb,Initial decay of flow properties of planar,cylindrical and spherical blast waves,UTIAS Tech.Note,244(1983).
|