Citation: | Zhang Han-lin. On the Singular Perturbation of a Nonlinear Ordinary Differential Equation with Two Parameters[J]. Applied Mathematics and Mechanics, 1989, 10(5): 453-461. |
[1] |
Chang,K.W.and F.A.Howes,Nonlinear perturbation phenomena:Theory and application,Appl.Math.Sci.,Springer-Verlag,New York Inc,56(1984).
|
[2] |
O'Donnell,Mark,A.,Boundary and Corder layer behavior in singularly perturbed semilinear systems of boundary value problems,SIAM.J.Math.Anal.,15(1984),317-332.
|
[3] |
Howes,F.A.,Differential inequalities and applications to nonlinear singular perturbationproblems,J.Diff.Equ.,20(1976),133-149.
|
[4] |
Chang,K.W.,Diagonalization method for a vector boundary problem of singular perturbation type,J.Math.Anal.Appl.,48(1974),652-665.
|
[5] |
Howes,F.A.,Effective characterization of the asymptotic behavior of solution of singularly perturbed boundary value problem,SIAM J.Appl.Math.,30,2(1976).
|
[6] |
Howes,F.A.,Singularly perturbed semilinear Robin problem,Studies in Appl.Math.,67(1982) 125-139.
|
[7] |
Mo Jia-qi,The estimation of singularly perturbed solution for a second order quasilinear equation via differential inequalities,J.Math.Res.and Exposition,1(1986),58-64.
|
[8] |
O'Malley,R.E.Jr.,Singular perturbation of boundary value problem for linear ordinary differential equations involving two parameters,J.Math.Anal.Appl.,19(1967),291-308.
|
[9] |
O'Malley,R.E.Jr.,Boundary value problems for linear systems of ordinary differential equations involving many parameters,J.Math.Mech.,18(1969),835-856.
|
[10] |
O'Malley,R.E.Jr.On initial value problems for nonlinear systems of differential equations with two small parameters,Arch.Ration Mech.Anal.,40(1971),209-222.
|
[11] |
Nagumo,M.,Über die Differential gleichung y"=f(x,y,y)Proc.Phys.Soc.Japan,19(1937),861-866.
|
[12] |
Jackson,L.K.,Subfunctions and second-order ordinary differential inequalities,Advances in Math.,2(1968),307-363.
|
[13] |
Heidel,J.W.,A Second-order nonlinear boundary value problem,J.Math.Anal,and Appl.,48(1974),493-503.
|