Zhang Shi-sheng. Basic Theory and Applications of Probabilistic Metric Spaces(Ⅱ)[J]. Applied Mathematics and Mechanics, 1988, 9(3): 193-204.
Citation: Zhang Shi-sheng. Basic Theory and Applications of Probabilistic Metric Spaces(Ⅱ)[J]. Applied Mathematics and Mechanics, 1988, 9(3): 193-204.

Basic Theory and Applications of Probabilistic Metric Spaces(Ⅱ)

  • Received Date: 1987-01-12
  • Publish Date: 1988-03-15
  • This paper is a continuation of the author's previous paper [1],in which the characterizations of various probabilistically bounded sets are presented,and the linear operator theory and fixed point theory on probabilistic metric spaces are given,too.
  • loading
  • [1]
    张石生,概率度量空间的基本理论(Ⅰ),应用数学和力学,9,2(1988).
    [2]
    张石生,《不动点理论及应用》,重庆出版社(1984).
    [3]
    Zhang Shi-sheng,The metrization of probabilistic metric spaces with applications,Zbornike radova Prirodno-matematickog fakulteta,u Novom Sadu,Serija za matematiku,15,1(1985),107-117.
    [4]
    Hadžič,O.,Some fixed point theorems in probabilistic metric space,Ibid.15 1(1985),23-36.
    [5]
    Zhang Shi-sheng,On the theory of probabilistic metric spaces with applications,Z.Wahrscheinlichkeitstheorie vcrw.Gebiete,67(1984),85-94.
    [6]
    张石生,PM-空间与映象的不动点定理,数学研究与评,5,3(1985),23-28
    [7]
    Constantin,Gh.,On some classes of contraction mappings in Menger spaces,Seminarul de Teoria Probubilitatilor si Applicatii,76(1985),1-10.
    [8]
    Radu,V.,On some fixed point theorems in probabilistic metric spaces.1bid.,74(1985),1-10.
    [9]
    Nadler,S.B.,Multi-valued contraction mappings,Pacific J.Math.,30(1969),475-487.
    [10]
    游兆永等,论概率赋范空间上的线性算子及其它,全国第四次泛函分析会议论文资料(1986).
    [11]
    张文修、张继国,PM-空间中概率直径的特征及LPM-空间,工程数学学报,2(1985).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2172) PDF downloads(807) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return