Wang Ming, Zhang Hong-qing. On the Embedding and Compact Properties of Finite Element Spaces[J]. Applied Mathematics and Mechanics, 1988, 9(2): 127-134.
Citation: Wang Ming, Zhang Hong-qing. On the Embedding and Compact Properties of Finite Element Spaces[J]. Applied Mathematics and Mechanics, 1988, 9(2): 127-134.

On the Embedding and Compact Properties of Finite Element Spaces

  • Received Date: 1986-11-30
  • Publish Date: 1988-02-15
  • In this paper, the generalized Sobolev embedding theorem and the generalized Rellich-Kondrachov compact theorem for finite element spaces with multiple sets of functions are established. Specially, they are true for nonconforming, hybrid and quasi-conforming element spaces with certain conditions.
  • loading
  • [1]
    张鸿庆、王鸣,拟协调元空间的紧致性和拟协调元法的收敛性,应用数学和力学,7, 5 (1988),409-423.
    [2]
    Zhang Hong-qing and Wang Ming, Finite element approximations with multiple sets of functions and quasi-conforming elements, Proc. of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Ed. Feng Kang, Science Press (1985), 354-365.
    [3]
    Stummel, F., Basic compactness properties of nonconforming and hybrid finite element spaces, RAIRO, Numer. Anal., 4, 1 (1980), 81-115.
    [4]
    Adams, R.A., Sobolev Spaces, Academic Press, New York (1975).
    [5]
    Ciarlet, P.C., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford (1978).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2060) PDF downloads(539) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return