Su Yu-cheng. The Boundary Layer Scheme for a Singularly Perturbed Problem for the Second Order Elliptic Equation in the Rectangle[J]. Applied Mathematics and Mechanics, 1987, 8(3): 199-206.
Citation: Su Yu-cheng. The Boundary Layer Scheme for a Singularly Perturbed Problem for the Second Order Elliptic Equation in the Rectangle[J]. Applied Mathematics and Mechanics, 1987, 8(3): 199-206.

The Boundary Layer Scheme for a Singularly Perturbed Problem for the Second Order Elliptic Equation in the Rectangle

  • Received Date: 1986-01-05
  • Publish Date: 1987-03-15
  • Using singularly perturbation theory is constructed the boundary layer scheme for a Dirichlet problem for the second order singularly perturbed equation of elliptic type in the rectangle. The error estimate is given.
  • loading
  • [1]
    苏煜城,《奇异摄动中的边界层校正法》,上海科技出版社(1983).
    [2]
    Emelyanov, K.V., A differenee scheme for the equation εΔu+aux1=ƒ, Difference Methods for the Solution of Boundary Problems and Discontinous Boundary Data, ed.G.I, Shishkin, Sverdlovsk(1976), 19-37.
    [3]
    Emelyanov, K.V., On a difference scheme for a differential equation with a small parameter affecting the highest derivative, Num.Meth.Mech.Cont.Media, 1, 5(1970).
    [4]
    Miller, J.J.H., Construction of an FEM for a Singularly Perturbed Problem in Two Dimensions, ISNM'31, Birkhäuser Verlag, Basel(1976), 165-169.
    [5]
    Hsio, G.C.and K.E.Jordan, Solution to the Difference Equations of Singular Perturbation Problem in NASPP, P.W.Hemker and J.J.H.Miller, eds., Academic Press, London(1979), 433-440.
    [6]
    Butuzov, V.F., On asymptotic of solutions of singularly perturbed equations of elliptic type in the rectangle, Differential Equations, 11, 6(1975).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1738) PDF downloads(555) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return