XU Chun-hui, HUANG Wen-bin, XU Yong. Squeeze Flow of a Second-Order Fluid Between Two Parallel Disks or Two Spheres[J]. Applied Mathematics and Mechanics, 2004, 25(9): 967-973.
Citation: XU Chun-hui, HUANG Wen-bin, XU Yong. Squeeze Flow of a Second-Order Fluid Between Two Parallel Disks or Two Spheres[J]. Applied Mathematics and Mechanics, 2004, 25(9): 967-973.

Squeeze Flow of a Second-Order Fluid Between Two Parallel Disks or Two Spheres

  • Received Date: 2002-10-25
  • Rev Recd Date: 2004-04-20
  • Publish Date: 2004-09-15
  • The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method.Based on the Reynolds.lubrication theory,the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks.Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching,arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force.It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.
  • loading
  • [1]
    Bird R B, Armstrong R C,Hassager O.Dynamics of Polymeric Liquids[M].New York: Wiley,1977,19—21.
    [2]
    Scott J R. Theory and application of the parallel plate viscometer[J].Trans Inst Rubber Ind,1931,7(2):169—186.
    [3]
    Davis A M J, Frenkel A L. Cylindrical liquid bridges squeezed between parallel plates: exact Stokes flow solutions and hydrodynamic forces[J].Phys Fluids A,1992,4(6):1105—1109. doi: 10.1063/1.858229
    [4]
    Smyrnaios D N, Tsamopoulos J A. Squeeze flow of Bingham plastics[J].J Non-Newtonian Fluid Mech,2001,100(19):165—190. doi: 10.1016/S0377-0257(01)00141-0
    [5]
    Sherwood J D, Durban D. Squeeze-flow of a Herschel-Bulkley fluid[J].J Non-Newtonian Fluid Mech,1998,77(1/2):115—121. doi: 10.1016/S0377-0257(97)00099-2
    [6]
    Phan-Thien N, Sugeng F,Tanner R I. The squeeze-film flow of a viscoelastic fluid[J].J Non-Newtonian Fluid Mech,1987,24(1):97—119. doi: 10.1016/0377-0257(87)85006-1
    [7]
    Laun H M, Rady M,Hassager O. Analytical solutions for squeeze flow with partial wall slip[J].J Non-Newtonian Fluid Mech,1999,81(1/2):1—15. doi: 10.1016/S0377-0257(98)00083-4
    [8]
    XU Chun-hui,HUANG Wen-bin,XU Yong.Squeeze flow of a second-order fluid between two parallel disks with wall slip[J].Transactions of the CSAE,2002,18(5):19—22.
    [9]
    Adams M J,Edmondson B. Forces between particles in continuous and discrete liquid media[A].In:Briscore B J, Adams M J Eds.Tribology in Particulate Technology,Adam Hilger[C].Bristol,1987,154—172.
    [10]
    Lian G,Thornton C, Adams M J. A theoretical study of the liquid bridge forces between two rigid spherical bodies[J].Journal of Colloid and Interface Science,1993,161:138—147. doi: 10.1006/jcis.1993.1452
    [11]
    Rodin G J, Squeeze film between two spheres in a power-law fluid[J].Non-Newtonian Fluid Mech,1996,63(2/3):141—152.
    [12]
    徐泳,黄文彬,李红艳.圆球颗粒间有幂率流体时挤压流动的法向粘性力[J].农业工程学报,2002,18(2):1—4.
    [13]
    黄文彬,徐泳,练国平,等.存在滑移时两球间的幂率流体挤压流动[J].应用数学和力学,2002,23(7):722—728.
    [14]
    陈文芳.非牛顿流体力学[M].北京:科学出版社,1984.
    [15]
    Leal L G.The slow motion of slender rod-like particles in a second order fluid[J].J Fluid Mech,1975,69(2):305—337. doi: 10.1017/S0022112075001450
    [16]
    Giovanni P Galdi. Slow steady fall of rigid bodies in second-order fluid [J].Non-Newtonian Fluid Mech,2001,96(1/2):373—381. doi: 10.1016/S0377-0257(00)00220-2
    [17]
    Howard H Hu, Daniel D Joseph.Lift on sphere near a plane wall in a second-order fluid[J].Non-Newtonian Fluid Mech,1999,88(1/2):173—184. doi: 10.1016/S0377-0257(99)00013-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2721) PDF downloads(658) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return