Citation: | MENG Bin, GUO Mao-zheng, CAO Xiao-hong. Free Fisher Information and Amalgamated Freeness[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1007-1013. |
[1] |
Voiculescu D.The analogues of entropy and of Fisher's information measure in free probability theory—Ⅲ:the absence of Cartan subalgebras[J].Geometric and Functional Analysis,1996,6(1):172—199. doi: 10.1007/BF02246772
|
[2] |
Ge L.Applications of free entropy to finite von Neumann algebras Ⅱ[J].Annals of Mathematics,1998,147(2):143—157. doi: 10.2307/120985
|
[3] |
Voiculescu D.The analogues of entropy and of Fisher's information measure in free probability theory—Ⅴ:Noncommutative Hilbert transforms[J].Inventiones Mathematicae,1998,132(1):189—227. doi: 10.1007/s002220050222
|
[4] |
Voiculescu D.The analogues of entropy and of Fisher's information measure in free probability theory—Ⅵ:liberation and mutual free information[J].Advances in Mathematics,1999,146(1):101—166. doi: 10.1006/aima.1998.1819
|
[5] |
Voiculescu D.Operations on certain non-commutative operator-valued random variables[J].Astérisque,1995,232(1):243—275.
|
[6] |
Sunder V S.An Invitation to von Neumann Algebras[M].New York:Springer-Verlag,1987.
|
[7] |
Cover T M,Thomas J A.Elements of Information Theory[M].Chichester:John Wiley & Sons,Inc,1976.
|
[8] |
Speicher R.Combinatorial theory of the free product with amalgamation and operator-valued free probability theory[J].Memoirs of AMS,1998,(627):1—88.
|
[9] |
Nica A,Shlyakhtenko D,Speicher R.Operator-valued distributions—1:characterizations of freeness[J].International Mathematics Research Notices,2002,(29):1509—1538.
|