Li Gui-hua. Pansystems Research on a Type of Fixed Subsets[J]. Applied Mathematics and Mechanics, 1986, 7(2): 127-132.
Citation:
Li Gui-hua. Pansystems Research on a Type of Fixed Subsets[J]. Applied Mathematics and Mechanics, 1986, 7(2): 127-132.
Li Gui-hua. Pansystems Research on a Type of Fixed Subsets[J]. Applied Mathematics and Mechanics, 1986, 7(2): 127-132.
Citation:
Li Gui-hua. Pansystems Research on a Type of Fixed Subsets[J]. Applied Mathematics and Mechanics, 1986, 7(2): 127-132.
Pansystems Research on a Type of Fixed Subsets
Received Date: 1984-12-01
Publish Date:
1986-02-15
Abstract
The present paper continues the pansystems research, on fixed suhsi is. Unier ihe pansystems framework it gives the existence criterion of I-type fixed subsets, and the theorems about the relations between the classes of reflexive and equivalent relations and fixed subsets; introduces the concept of fixpoints of binary relations existence theorems about fixpoints for a kind of panveeighted network.
References
[1]
Wu Xue-mou,Fixed pansystems theorems and pansystems catastrophe analysis of pan-weighted network,J,of Math.Research and Exposition,1(1984).
[2]
Smart,D,R.,Fixed Point Theorems,Cambridge University Press(1980).
[3]
李贵华,不动泛系定理及其进展,大自然探素(待发表).
[4]
李贵华,不动泛系定理中结构与数最的特征描述,应用数学和力学,5,6(1984),887-893.
[5]
高隆颖、王书基,泛对称与不动泛系定理,应用数学和力学,5,5(1984),743-747.
[6]
Wu Xue-mou,Pansystems methodology:Concepts,theorems and applications(I-Ⅷ),Science F,xploration,1,2.4(1982),1,4(1983),etc.
Relative Articles
[1] LIANG Qing. Asymptotic Properties of the Solutions to a Class of Perturbed Stochastic Impulsive Functional Differential Equations [J]. Applied Mathematics and Mechanics, 2022, 43(9): 1034-1044. doi: 10.21656/1000-0887.420267
[2] MA Li, MA Ruinan. Almost Sure Asymptotic Stability of the Euler-Maruyama Method With Random Variable Stepsizes for Stochastic Functional Differential Equations [J]. Applied Mathematics and Mechanics, 2019, 40(1): 97-107. doi: 10.21656/1000-0887.390057
[3] LIU Yu-ying, XIAO Yan-ni. An Epidemic Model With Saturated Media/Psychological Impact [J]. Applied Mathematics and Mechanics, 2013, 34(4): 399-407. doi: 10.3879/j.issn.1000-0887.2013.04.008
[4] YU Xiao-jun. On Coordination Ratio of a Mixed Routing Game [J]. Applied Mathematics and Mechanics, 2013, 34(4): 420-426. doi: 10.3879/j.issn.1000-0887.2013.04.010
[5] Xue Zhiqun, Zhou Haiyun. Iterative Approximation with Errors of Fixed Point for a Class of Nonlinear Operation with a Bounder Range [J]. Applied Mathematics and Mechanics, 1999, 20(1): 93-98.
[6] Zhao Jie-min, Huang Ke-lei, Lu Qishao. The Existence of Periodic Solutions for a Class of Functional Differential Equations and Their Application [J]. Applied Mathematics and Mechanics, 1994, 15(1): 49-58.
[7] Wang Yong, Yu Nian-cai. On Robust Stability of a Class of Polynomial Families [J]. Applied Mathematics and Mechanics, 1993, 14(12): 1041-1048.
[8] Zan Ting-quan, Wu Xue-mou. Pansystems Clustering Analysis of Complex Systems [J]. Applied Mathematics and Mechanics, 1992, 13(6): 489-495.
[9] Zhang Shi-sheng. Some Existence Theorems of Common and Coincidence Solutions for a Class of Functional Equations Arising in Dynamic Programming [J]. Applied Mathematics and Mechanics, 1991, 12(1): 31-37.
[10] Wu Xue-mou, Guo Ding-he. Investigation and Applications of Pansystems Recognition Theory and Pansystems-Operations Research of Large-Scale Systems(Ⅱ) [J]. Applied Mathematics and Mechanics, 1991, 12(1): 63-67.
[11] Liu Huai-jun. Some New Results about Fixed Pansystems Theorems [J]. Applied Mathematics and Mechanics, 1991, 12(11): 1049-1053.
[12] Wang Shu-ji. Fixed Pansystems Theorems and Eigen-Fuzzy Sets [J]. Applied Mathematics and Mechanics, 1989, 10(9): 833-839.
[13] Zhu Sui-cai. Some Pansystems Studies on Panchaos and Strange Panattractor [J]. Applied Mathematics and Mechanics, 1987, 8(8): 751-754.
[14] Gao Long-ying. Pansystems Studies in Stability, Bifurcation and Chaos [J]. Applied Mathematics and Mechanics, 1987, 8(2): 163-168.
[15] Qin Guo-guang. Fixed Pansystems Theorems and Pansystems Logic Conservation of Chaos [J]. Applied Mathematics and Mechanics, 1987, 8(3): 287-290.
[16] Zhu Xu-ding, Wu Xue-mou. An Approach on Fixed Pansystems Theorems: Panchaos and Strange Panattractor [J]. Applied Mathematics and Mechanics, 1987, 8(4): 331-335.
[17] Wu chen. Pansymmetry and Fixed Pansystems Theorems of a Class of Pansystems Relations [J]. Applied Mathematics and Mechanics, 1985, 6(10): 923-928.
[18] Wu Xue-mou. Investigation and Applications of Pansystems Recognition Theory and Pansystems-Operations Research of Large-Scale Systems( I ) [J]. Applied Mathematics and Mechanics, 1984, 5(1): 19-32.
[19] Li Gui-hua. The Description of the Characteristics of the Structure and the Quantity in Fixed Pansystems Theorems [J]. Applied Mathematics and Mechanics, 1984, 5(6): 887-893.
[20] Gao Long-ying, Wang Shu-ji. Pansymmetry and Fixed Pansystems Theorems [J]. Applied Mathematics and Mechanics, 1984, 5(5): 743-747.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 19.1 % FULLTEXT : 19.1 % META : 80.6 % META : 80.6 % PDF : 0.3 % PDF : 0.3 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 12.3 % 其他 : 12.3 % Greensburg : 0.3 % Greensburg : 0.3 % Singapore : 0.1 % Singapore : 0.1 % 上海 : 0.5 % 上海 : 0.5 % 六安 : 0.5 % 六安 : 0.5 % 北京 : 1.3 % 北京 : 1.3 % 南宁 : 0.5 % 南宁 : 0.5 % 台州 : 0.1 % 台州 : 0.1 % 呼和浩特 : 0.1 % 呼和浩特 : 0.1 % 张家口 : 2.8 % 张家口 : 2.8 % 新乡 : 0.1 % 新乡 : 0.1 % 新奥尔良 : 0.1 % 新奥尔良 : 0.1 % 深圳 : 0.6 % 深圳 : 0.6 % 湖州 : 0.1 % 湖州 : 0.1 % 石家庄 : 0.5 % 石家庄 : 0.5 % 芒廷维尤 : 7.3 % 芒廷维尤 : 7.3 % 苏州 : 0.1 % 苏州 : 0.1 % 衢州 : 0.1 % 衢州 : 0.1 % 西宁 : 71.7 % 西宁 : 71.7 % 西安 : 0.1 % 西安 : 0.1 % 贵港 : 0.1 % 贵港 : 0.1 % 达拉斯 : 0.3 % 达拉斯 : 0.3 % 郑州 : 0.4 % 郑州 : 0.4 % 其他 Greensburg Singapore 上海 六安 北京 南宁 台州 呼和浩特 张家口 新乡 新奥尔良 深圳 湖州 石家庄 芒廷维尤 苏州 衢州 西宁 西安 贵港 达拉斯 郑州