Citation: | JIN Yin-lai, ZHU De-ming. Twisted Bifurcations and Stability of Homoclinic Loop With Higher Dimensions[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1076-1082. |
[1] |
Arnold V I.Geometric Methods in the Theory of Ordinary Differential Equations[M].Second Edition.New York:Springer-Verlag,1983.
|
[2] |
李继彬,冯贝叶.稳定性,分支与混沌[M].昆明:云南科技出版社,1995.
|
[3] |
Chow S N,Deng B,Fiedler B.Homoclinic bifurcation at resonant eigenvalues[J].J Dyna Syst Diff Equs,1990,2(2):177—244. doi: 10.1007/BF01057418
|
[4] |
ZHU De-ming.Problems in homoclinic bifurcation with higher dimensions[J].Acta Math Sinica(N S),1998,14(3):341—352. doi: 10.1007/BF02580437
|
[5] |
JIN Yin-lai,ZHU De-ming.Degenerated homoclinic bifurcations with higher dimensions[J].Chinese Ann Math,Ser B,2000,21(2):201—210. doi: 10.1142/S0252959900000224
|
[6] |
金银来,李先义,刘兴波.非扭曲高维同宿分支[J].数学年刊,A辑,2001,22(4):473—478.
|
[7] |
JIN Yin-lai,ZHU De-ming.Bifurcations of rough heteroclinic loops with three saddle points[J].Acta Mathematica Sinica,English Series,2002,18(1):199—208. doi: 10.1007/s101140100139
|
[8] |
Wiggins S.Introduction to Applied Nonlinear Dynamical System and Chaos[M].New York:Springer-Verleg,1990.
|
[9] |
Fenichel N.Persistence and smoothness of invariant manifold for flows[J].Indiana Univ Math J,1971,21(2):193—226. doi: 10.1512/iumj.1971.21.21017
|
[10] |
ZHU De-ming.Homoclinic bifurcation with codimension 3[J].Chinese Ann Math, Series B,1994,15(2):205—216.
|
[11] |
朱德明.坐标变换的不变量[J].华东师范大学学报,1998,(1):19—21.
|