Citation: | WANG He-yuan, LI Kai-tai. Spectral Galerkin Approximation of Couette-Taylor Flow[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1083-1092. |
[1] |
Anderreck C D,Liu S S,Swinney H L.Flow regimes in a circular Couette system with independent rotating cylinders[J].J Fluid Mech,1986,164(1):155—183. doi: 10.1017/S0022112086002513
|
[2] |
Yasusi Takada.Quasi-periodic state and transition to turbulence in a rotating Couette system[J].J Fluid Mech,1999,389(1):81—99. doi: 10.1017/S0022112099005091
|
[3] |
Coughlin K T,Marcus P S,Tagg R P,et al.Distinct quasiperiodic modes with like symmetry in a rotating fluid[J].Phys Rev Lett,1991,66(1):1161—1164. doi: 10.1103/PhysRevLett.66.1161
|
[4] |
Meincke O,Egbers C.Routes into chaos in small and wide gap Taylor-Coutte flow[J].Phys Chem Earth B,1999,24(5):467—471.
|
[5] |
Takeda Y,Fischer W E,Sakakibara J.Messurement of energy spectral density of a flow in a rotating Couette system[J].Phys Rev Lett,1993,70(1):3569—3571. doi: 10.1103/PhysRevLett.70.3569
|
[6] |
Wimmer M.Experiments on the stability of viscous flow between two concentric rotating spheres[J].J Fluid Mech,1980,103(1):117—131.
|
[7] |
Taylor G I.Stability of a viscous liquid contained between two rotating cylinders[J].Phil Trans Roy Soc London A,1923,223(1):289—343. doi: 10.1098/rsta.1923.0008
|
[8] |
李开泰,黄艾香.有限元方法及其应用——发展及应用[M].西安:西安交通大学出版社,1988,320—321.
|
[9] |
刘式达,刘式适.特殊函数[M].北京:气象出版社,1988,202—203.
|
[10] |
杨应辰.数学物理方程 特殊函数[M].北京:国防工业出版社,1991,160—162.
|
[11] |
萧树铁,居余马,李海中.代数与几何[M].北京:高等教育出版社,2000,198—199.
|
[12] |
王立周,李开泰.Navier-Stokes方程非奇异解分支的谱Galerkin逼近[J].计算数学,2002,24(1):39—52.
|
[13] |
Brezzi F,Rappaz J,Raviart P A.Finite dimensional approximation of nonlinear problem—Part Ⅰ:branches of nonsingular solution[J].Numer Math,1980,36(1):1—25. doi: 10.1007/BF01395985
|