Zhang Hong-qing, Wang Ming. Finite Element Approximations with Multiple Sets of Functions and Quasi-Conforming Elements for Plate Bending Problems[J]. Applied Mathematics and Mechanics, 1985, 6(1): 41-52.
Citation: Zhang Hong-qing, Wang Ming. Finite Element Approximations with Multiple Sets of Functions and Quasi-Conforming Elements for Plate Bending Problems[J]. Applied Mathematics and Mechanics, 1985, 6(1): 41-52.

Finite Element Approximations with Multiple Sets of Functions and Quasi-Conforming Elements for Plate Bending Problems

  • Received Date: 1984-03-15
  • Publish Date: 1985-01-15
  • Continuing refs. [1],[2]. we try toestablish here the mathematical foundation of quasi-conforming elements suggesied by Prof. Tang Limin and his colleagues for plate bending problems [3,4]. The main theme used in this paper is the finite element approximations with multiple sets of functions.
  • loading
  • [1]
    Zhang Hong-qing,The generalized patch test and 9-parameters quasi-conforming element,Proceedings of the Sino-France Symposium on Finite Element Methods,Edited by Feng Kang and J.L.Lions,Science Press,Gordon and Breach,Science Publishers,(1983),566-583.
    [2]
    张鸿庆,多套函数广义分片检验与12参数拟协调元,大连工学院学报,21, 3(1982), 11-19.
    [3]
    唐立民、陈万吉、刘迎曦,有限元分析中的拟协调元,大连工学院学报,19, 2(1980), 19-35
    [4]
    蒋和洋,用拟协调元法推导高精度三角形板弯曲单元,大连工学院学报,20,增刊2(1981).21-28.
    [5]
    钱伟长.《变分法与有限元》.上册.科学出版社.(1980).
    [6]
    Oden,J.T.,J.N.,Reddy,An Introdution to the Mathematical Theory of Finite Elements,Wiley-Interscience,New York(1976).
    [7]
    Stummel,F.,The generalized patch test,SIAM J.Num.Anal.16(1979),449-471.
    [8]
    Ciarlet,P.C.,The Finite Element Method for Elliptic Problems,North-Holland,Amsterdam,New York,Oxford,(1978).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1947) PDF downloads(436) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return