Shen Hui-shen. On the General Equations of Axisymmetric Problems of Ideal Plasticity[J]. Applied Mathematics and Mechanics, 1984, 5(4): 577-582.
Citation: Shen Hui-shen. On the General Equations of Axisymmetric Problems of Ideal Plasticity[J]. Applied Mathematics and Mechanics, 1984, 5(4): 577-582.

On the General Equations of Axisymmetric Problems of Ideal Plasticity

  • Received Date: 1983-07-11
  • Publish Date: 1984-08-15
  • In this paper, introducing a velocity potential, we reduce the fundamental equations of axisymmetric problems of ideal plasticity to two nonlinear partical differential equations. Front these equations we discuss compatibility of Harr-Kármán hypothesis with von Mises yield criterion and the associated flow law.
  • loading
  • [1]
    Symonds, P. S., On the general equations of problems of axial symmetry in the theorg of plasticity, Quar. Appl. Math., 6, 4(1949), 448-452.
    [2]
    林鸿荪,轴对称塑性变形问题(英译名:On the problem of axial-symmetric plastic deformation),物理学报.10.2(1954).89-104.
    [3]
    Аннин В.Д.,Одно оочнее решеие осесимметричной зддачи идеалвной пластичности,Журнал Прuклабноu механuкu u Технuческоu Фuзuкu,14,2(1973),171-172.
    [4]
    Haar, A., and Th. von Kármán, Zur Theorie der Spannungs-zustande in plastischen, Math. Phy. Klasse,(1909), 204-218.
    [5]
    Hill, R., The Mathematical Theory of Plasticity, Oxford Clarenden Press,(1950).
    [6]
    Shield, R. T., On the plastic flow of metals under conditions of axial symmetry, Proc. Roy. Rec., A233,(1955), 267-287.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1687) PDF downloads(584) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return