LI Guo-hui, DENG Xue-ying. Stability of the Crossflow Pattern Around a Slender and Influence of Disturbance[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1239-1248.
Citation: LI Guo-hui, DENG Xue-ying. Stability of the Crossflow Pattern Around a Slender and Influence of Disturbance[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1239-1248.

Stability of the Crossflow Pattern Around a Slender and Influence of Disturbance

  • Received Date: 2002-06-18
  • Rev Recd Date: 2004-09-10
  • Publish Date: 2004-12-15
  • Topological structure and stability of a slender cross flow is discussed by the stability theory of dynamic system.The inner boundary of flow field was limiting streamline and it was proved that the topological structure connected saddles by limiting streamline is stable.It is proved that the development of slender vortices leads to the change of topological structure about cross flow.And it is the change from stable and symmetrical vortices flow pattern to unstable and symmetrical vortices flow pattern,and then to stable and asymmetrical vortices flow pattern due to little disturbance which leads to the development of asymmetrical slender vortices.The influence of disturbance to flowfield structure was discussed by unfolding theory too.
  • loading
  • [1]
    Keener E R,Chapman G T.Similarity in vortex asymmetric over slender bodies and wings[J].AIAA J,1977,12(15):1370—1372.
    [2]
    Ericsson L E.Sources of high alpha vortex asymmetry at zero sideslip[J].Journal of Aircraft,1992,29(6):1086—1090. doi: 10.2514/3.56864
    [3]
    Peake D J,Tobak M.Three dimensional interactions and vortical flow with emphasis on high speeds[R]. AGARD-AG-252,1980.
    [4]
    Nishioka M,Sato H.Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers[J].Journal of Fluid Mechanics,1978,89(1):49—60. doi: 10.1017/S0022112078002451
    [5]
    李国辉,邓学蓥.细长体截面流态拓扑结构演化及其稳定性分析[J].北京航空航天大学学报,2001,27(6):674—676.
    [6]
    Maskell E C.Flow separation in three dimensions[R]. RAE Aero Rept,2565,1955.
    [7]
    陆启韶.常微分方程的定性方法和分叉[M].北京:北京航空航天大学出版社,1989.
    [8]
    Lowson M V,Ponton A J.Symmetry breaking in vortex flows on conical bodies[J].AIAA J,1992,30(6):1341—1352.
    [9]
    Werlé H.La Tunnel hg drodgnanique au service de la recherche aerospatiale[R]. ONERA Publication, No 156,1974.
    [10]
    CHEN Xue-rui,DENG Xue-ying,WANG Yan-kui,et al.Influence of nose perturbations on behaviors of asymmetric vortices over slender body[J].Acta Mechanica Sinica,2002,18(6):581—593. doi: 10.1007/BF02487960
    [11]
    Luo S C,Lim T T,Lua K B,et al.Flowfield around ogive/elliptic-tip cylinder at high angle of attack[J].AIAA J,1998,36(10):1778—1787. doi: 10.2514/2.286
    [12]
    Bernhardt J E,Williams D R.Proportional control of asymmetric forebody vortices[J].AIAA J,1998,36(11):2087—2093. doi: 10.2514/2.310
    [13]
    Bridges D H,Homung H G.Elliptic tip effects on the vortex wake of an axisymmetric body at incidence[J].AIAA J,1994,32(7):1437—1445. doi: 10.2514/3.12213
    [14]
    Wardlow A B Jr,Yanta W J.Asymmetric flowfield development on a slender body at high incidence[J].AIAA J,1984,22(2):233—245.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2543) PDF downloads(893) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return