LIU You-wen, FANG Qi-hong. Electroelastic Interaction Between a Piezoelectric Screw Dislocation and a Circular Inhomogeneity With Interfacial Cracks[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1305-1312.
Citation: LIU You-wen, FANG Qi-hong. Electroelastic Interaction Between a Piezoelectric Screw Dislocation and a Circular Inhomogeneity With Interfacial Cracks[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1305-1312.

Electroelastic Interaction Between a Piezoelectric Screw Dislocation and a Circular Inhomogeneity With Interfacial Cracks

  • Received Date: 2003-03-23
  • Rev Recd Date: 2004-06-08
  • Publish Date: 2004-12-15
  • A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method,a general solution to the problem was presented.For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and the electroelastic field intensity factors were derived explicitly when the interface contains single crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula.As a result,numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value.It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.
  • loading
  • [1]
    Deng W, Meguid S A. Analysis of a screw dislocation inside an elliptical inhomogeneity in piezoelectric solids[J].International Journal Solids and Structures,1999,36(10):1449—1469. doi: 10.1016/S0020-7683(98)00047-X
    [2]
    Meguid S A, Deng W. Electro-elastic interaction between a screw dislocation and elliptical inhomogeneity in piezoelectric materials[J].International Journal Solids and Structures,1998,35(13):1467—1482. doi: 10.1016/S0020-7683(97)00116-9
    [3]
    Huang Z, Kuang Z B. Dislocation inside a piezoelectric media with an elliptical inhomogeneity[J].International Journal Solids and Structures,2001,38(46/47):8459—8480. doi: 10.1016/S0020-7683(01)00062-2
    [4]
    Kattis M A, Providas E, Kalamkarov A L. Two-phone potentials in the analysis of smart composites having piezoelectric components[J].Composites Part B, 1998,29(1):9—14. doi: 10.1016/S1359-8368(97)00021-8
    [5]
    刘金喜, 姜稚清, 冯文杰. 压电螺型位错和椭圆夹杂的电弹相互作用[J].应用数学和力学,2000,21(11):1185—1190.
    [6]
    Liu Y W, Fang Q H. A piezoelectric screw dislocation interacting with an interphase layer between a circular inclusion and the matrix[J].International Journal of Solids and Structures,2004,41(11/12):3255—3274. doi: 10.1016/j.ijsolstr.2003.12.027
    [7]
    Liu Y W, Fang Q H. Electroelastic interaction between a piezoelectric screw dislocation and circular inhomogeneity interfacial rigid lines[J].International Journal of Solids and Structures,2003,40(20):5353—5370. doi: 10.1016/S0020-7683(03)00287-7
    [8]
    Zhong Z, Meguid S A. Interfacial debonding of circular inhomogeneity in piezoelectric materials[J].International Journal Solids and Structures,1997,34(16):1965—1983. doi: 10.1016/S0020-7683(96)00164-3
    [9]
    王旭, 沈亚鹏. 三相压电复合本构模型中的弧形界面裂纹[J]. 固体力学学报,2001,22(4): 329—342.
    [10]
    Jiang C P, Tong Z H, Chueng Y K.A generalized self-consistent method for piezoelectric fiber reinforced composites under anti-plane shear [J].Mechanics of Materials,2001,33(5):295—308. doi: 10.1016/S0167-6636(00)00062-4
    [11]
    Pak Y E. Force on piezoelectric screw dislocation[J].Journal of Applied Mechanics,1990,57(3):863—869. doi: 10.1115/1.2897653
    [12]
    樊大钧.数学弹性力学[M]. 北京: 新时代出版社,1983.
    [13]
    Muskhelishvili N L.Some Basic Problems of Mathematical Theory of Elasticity[M].Leyden: Noordhoff, 1975.
    [14]
    刘又文.圆形界面裂纹反平面问题的基本奇异解[J].固体力学学报,1991,12(3):244—254.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2523) PDF downloads(619) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return