Citation: | YU Yong-guang, ZHANG Suo-chun. Controlling Lü-System Using Partial Linearization[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1313-1318. |
[1] |
Lorenz E N.Deterministic non-periodic flows[J].J Atmos Sci,1963,20:130—141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[2] |
CHEN Guan-rong,DONG Xiao-ning.From chaos to order-perspectives and methodologies in controlling chaotic nonlinear dynamical system[J].Internat J Bifurcation and Chaos,1993,3(6):1363—1409. doi: 10.1142/S0218127493001112
|
[3] |
WANG Xiao-fan,CHEN Guan-rong.Chaotification via arbitrarily small feedback controls:theory,method and applications[J].Internat J Bifurcation and Chaos,2000,10(3):549—570.
|
[4] |
Obaradovic D,Lenz H.When is OGY control more than just pole placement[J].Internat J Bifurcation and Chaos,1997,7(3):691—699. doi: 10.1142/S0218127497000480
|
[5] |
Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Phys Rev Lett,1990,64(11):1196—1199. doi: 10.1103/PhysRevLett.64.1196
|
[6] |
CHEN Guan-rong,DONG Xiao-ning.On feedback control of chaotic continuous-time systems[J].IEEE Trans Circuits Syst Part Ⅰ,1993,40(9):591—601. doi: 10.1109/81.244908
|
[7] |
L Jin-hu,ZHANG Suo-chun.Controlling Chen's chaotic attractor using backstepping design based on parameters identification[J].Phys Lett A,2001,286(1/2):148—152. doi: 10.1016/S0375-9601(01)00383-8
|
[8] |
CHEN Guan-rong,Ueta T.Yet another chaotic attractor[J].Internat J Bifurcation and Chaos,1999,9(7):1465—1466. doi: 10.1142/S0218127499001024
|
[9] |
Lenz H,Obradovic D.Robust control of the chaotic Lorenz system[J].Internat J Bifurcation and Chaos,1997,7(12):2847—2854. doi: 10.1142/S0218127497001928
|
[10] |
L Jin-hu,CHEN Guan-rong.A new attractor coined[J].Internat J Bifurcation and Chaos,2002,12(3):659—661. doi: 10.1142/S0218127402004620
|
[11] |
Zwillinger D.Handbook of Differential Equations[M].New York:Academic Press,1989,133—198.
|
[12] |
Slotine J,Li W.Applied Nonlinear Control[M].New Jersery:Prentice Hall,Englewood Cliffs,1991.
|
[1] | XU Changjin>, DUAN Zhenhua. A Delayed Feedback Control Method for Fractional-Order Chaotic Financial Models[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1392-1404. doi: 10.21656/1000-0887.400323 |
[2] | LI Tianze, GUO Ming, CHEN Xiangyong, ZHANG Han, MA Jianyu. Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206 |
[3] | LI Bowen, DING Jieyu, LI Yanan. An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(7): 768-779. doi: 10.21656/1000-0887.400038 |
[4] | DU Weixia, ZHANG Sijin, YIN Shan. An Intermittent Chaos Control Method for a Class of Symmetric Impact Systems[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1149-1158. doi: 10.21656/1000-0887.380292 |
[5] | DU Lin, ZHANG Ying, HU Gao-ge, LEI You-ming. Chaos Control for the Duopoly Cournot-Puu Model[J]. Applied Mathematics and Mechanics, 2017, 38(2): 224-232. doi: 10.21656/1000-0887.370256 |
[6] | LI Bin, HAO Peng, MENG Zeng, LI Gang. An Improved Adaptive Chaos Control Method for Inverse Reliability Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(9): 979-987. doi: 10.21656/1000-0887.380001 |
[7] | ZHANG Wei-wei, WU Ran-chao. Dual Projective Synchronization of Fractional-Order Chaotic Systems With a Linear Controller[J]. Applied Mathematics and Mechanics, 2016, 37(7): 710-717. doi: 10.21656/1000-0887.360356 |
[8] | FANG Ya-ling, SHI Zhong-ke. Feedback Linearization and Congestion Control for a Discrete Traffic Flow Model[J]. Applied Mathematics and Mechanics, 2015, 36(5): 474-481. doi: 10.3879/j.issn.1000-0887.2015.05.003 |
[9] | JIANG Xin, PENG Hai-jun, ZHANG Sheng. Symplectic Conservative Approach for Solving Nonlinear Closed-Loop Feedback Control Problems Based on Quasilinearization Method[J]. Applied Mathematics and Mechanics, 2013, 34(8): 795-806. doi: 10.3879/j.issn.1000-0887.2013.08.003 |
[10] | HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control[J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003 |
[11] | SHEN Jian-he, CHEN Shu-hui. Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(1): 21-29. |
[12] | Alexey Bobtsov, Nikolay Nikolaev, Olga Slita. Control of Chaotic Oscillations of a Satellite[J]. Applied Mathematics and Mechanics, 2007, 28(7): 798-804. |
[13] | XU Zi-xiang, ZHOU De-yun, DENG Zi-chen. Exact Linearization Based Multiple-Subspace Iterative Resolution to Affine Nonlinear Control System[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1457-1463. |
[14] | MA Jun-hai, REN Biao, CHEN Yu-shu. Impulsive Control of Chaotic Attractors in Nonlinear Chaotic Systems[J]. Applied Mathematics and Mechanics, 2004, 25(9): 889-894. |
[15] | YANG ling, LIU Zeng-rong, MAO Jian-min. Controlling Hyperchaos in Planar Systems by Adjusting Parameters[J]. Applied Mathematics and Mechanics, 2003, 24(4): 351-356. |
[16] | CHEN Li-qun, LIU Zeng-rong. Control of a Hyperchaotic Discrete System[J]. Applied Mathematics and Mechanics, 2001, 22(7): 661-665. |
[17] | Chen Liqun, Cheng Changjun. Controlling Chaotic Oscillations of Viscoelastic Plates by the Linearization via Output Feedback[J]. Applied Mathematics and Mechanics, 1999, 20(12): 1229-1234. |
[18] | Chen Liqun, Lin Yanzhu. Control of the Lorenz Chaos by the Exact Linearization[J]. Applied Mathematics and Mechanics, 1998, 19(1): 62-69. |
[19] | Yang Ling, Liu Zengrong. An Improvement and Proof of OGY Method[J]. Applied Mathematics and Mechanics, 1998, 19(1): 1-7. |
[20] | Zhao Lei, Chen Qiu. An Equivalent Nonlinearization Method for Analysing Response of Nonlinear Systems to Random Excitations[J]. Applied Mathematics and Mechanics, 1997, 18(6): 513-521. |