YANG Rui-liang, WANG Hong-zhen. A Novel Ellipsoidal Acoustic Infinite Element[J]. Applied Mathematics and Mechanics, 2005, 26(2): 239-245.
Citation: YANG Rui-liang, WANG Hong-zhen. A Novel Ellipsoidal Acoustic Infinite Element[J]. Applied Mathematics and Mechanics, 2005, 26(2): 239-245.

A Novel Ellipsoidal Acoustic Infinite Element

  • Received Date: 2003-12-20
  • Rev Recd Date: 2004-10-08
  • Publish Date: 2005-02-15
  • A novel ellipsoidal acoustic infinite element is proposed.It is based a new pressure representation,which can describe and solve the ellipsoidal acoustic field more exactly.The shape functions of this novel acoustic infinite element are similar to the Burnett.s method,while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor.The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical.Coupling with the standard finite element,this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape.This novel method was deduced in brief and the conclusion was kept in detail.To test the feasibility of this novel method efficiently,in the examples the infinite elements were considered,excluding the finite elements relative.This novel ellipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere.The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements.Analytical and numericalresults of these examples show that this novel method is feasible.
  • loading
  • [1]
    Bettess P.Infinite elements[J].Internat J Numer Methods Engrg,1977,11(1):53—64. doi: 10.1002/nme.1620110107
    [2]
    Burnett David S.A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion[J].J Acoust Soc Amer,1994,96(5):2798—2816. doi: 10.1121/1.411286
    [3]
    Astley R J,Macaulay G J. Mapped wave envelope for acoustical radiation and scattering[J].J Sound Vibration,1994,170(1):97—118. doi: 10.1006/jsvi.1994.1048
    [4]
    Gerdes K.Solution of the 3D-Helmholtz equation in the exterior domain of arbitrary shape using hp-finite-infinite elements[J].Finite Elements in Analysis and Design,1998,29(1):1—20. doi: 10.1016/S0168-874X(97)00045-0
    [5]
    Bettess P.Infinite Element[M].London: Wheeler's Hill, 1992:1—264.
    [6]
    Gerdes K.A summary of infinite element formulations for exterior Helmholtz problems[J].Comput Methods Appl Mech Engrg,1998,164(1):95—105. doi: 10.1016/S0045-7825(98)00048-6
    [7]
    Astley R J.Infinite elements for wave problems: A review of current formulations and an assessment of accuracy[J].Internat J Numer Methods Engrg,2000,49(3):951—976. doi: 10.1002/1097-0207(20001110)49:7<951::AID-NME989>3.0.CO;2-T
    [8]
    杨瑞梁,汪鸿振. 声无限元进展[J].机械工程学报, 2003,39(11):82—87.
    [9]
    Astley R J,Coyette J P.The performance of spheroidal infinite elements[J].Internat J Numer Methods Engrg,2001,52(3):1379—1396. doi: 10.1002/nme.260
    [10]
    Shirron Joseph J,Babuska Ivo.A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems[J].Comput Methods Appl Mech Engrg,1998,164(1):123—139.
    [11]
    Shirron Joseph J,Dey Saikat. Acoustic infinite elements for non-separable geometries[J].Comput Methods Appl Mech Engrg,2002,191(5):4123—4139. doi: 10.1016/S0045-7825(02)00355-9
    [12]
    YANG Rui-liang,WANG Hong-zhen.Adaptive ellipsoidal acoustic infinite element[J].Chinese Journal of Mechanical Engineering,2004,17(2):293—297. doi: 10.3901/CJME.2004.02.293
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2245) PDF downloads(598) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return