MA Jun-hai, REN Biao, CHEN Yu-shu. Analysis and Applied Study of Dynamic Characteristics of Chaotic Repeller in Complicated System[J]. Applied Mathematics and Mechanics, 2005, 26(4): 411-417.
Citation: MA Jun-hai, REN Biao, CHEN Yu-shu. Analysis and Applied Study of Dynamic Characteristics of Chaotic Repeller in Complicated System[J]. Applied Mathematics and Mechanics, 2005, 26(4): 411-417.

Analysis and Applied Study of Dynamic Characteristics of Chaotic Repeller in Complicated System

  • Received Date: 2003-05-30
  • Rev Recd Date: 2005-03-17
  • Publish Date: 2005-04-15
  • Fractal characters and fractal dimension of time series created by repeller in one complicated system were studied and the time series were reconstructed by applying theory of phase space reconstruction for chaotic times series,for purpose of modeling and prediction of time series created by chaotic repellers.The influence of zero-mean treatment,Fourier filter on prediction for time series were studied.The choice of prediction sample affects the relative error and the prediction length which were also under good concern.Result shows the modeling and prediction model provided here is practical for time series created by chaotic repellers.Zero-mean treatment has changed prediction result quantitively for chaotic repeller sample data.But using Fourier filter may decrease the prediction precision.This is theoretical and practical for study on chaotic repeller of complicated system.
  • loading
  • [1]
    CHEN Yu-shu,MA Jun-hai.The state space reconstruction technology of different kinds of chaotic data obtained from dynamical system[J].Acta Mechanica Sincia,1999,15(1):82—92. doi: 10.1007/BF02487904
    [2]
    Meyer Renate,Christensen Nelson.Bayesian reconstruction of chaotic dynamical systems[J].Phys Rev E,2000,62(9):3535—3542. doi: 10.1103/PhysRevE.62.3535
    [3]
    Kitoh Satoshi,Kimura Mahito,Mori Takao,et al.A fundamental bias in calculating dimension from finite data sets[J].Phys D,2000,141(10):171—182. doi: 10.1016/S0167-2789(00)00050-6
    [4]
    马军海,陈予恕,刘曾荣.动力系统实测数据的非线性混沌特性的判定[J].应用数学和力学,1998,19(6):481—488.
    [5]
    马军海,陈予恕,刘曾荣.不同随机分布的相位随机化对实测数据影响的分析研究[J].应用数学和力学,1998,19(11):955—964.
    [6]
    马军海,陈予恕,刘曾荣.动力系统实测数据的Liapunov指数的矩阵算法[J].应用数学和力学,1999,20(9):919—927.
    [7]
    马军海,陈予恕.混沌时序相空间重构的分析和应用研究[J].应用数学和力学,2000,21(11):1117—1124.
    [8]
    Hunt Brian R,Ott Edward,Yorke James A.Fractal dimensions of chaotic saddles of dynamical systems[J].Phys Rev E,1996,54(11):4819—4823. doi: 10.1103/PhysRevE.54.4819
    [9]
    Sweet David,Ott Edward.Fractal dimension of higher-dimensional chaotic repellers[J].Phys D,2000,139(4):1—27. doi: 10.1016/S0167-2789(99)00222-5
    [10]
    CAO Liang-yue,HONG Yi-guang,FANG Hai-ping,et al.Predicting chaotic timeseries with wavelet networks[J].Phys D,1995,85(8):225—238. doi: 10.1016/0167-2789(95)00119-O
    [11]
    ZHANG Qing-hua.Wavelet networks[J].IEE Transactions on Neural Networks,1992,11(6):889—898.
    [12]
    Castillo E,Gutierrez J M.Nonlinear time series modeling and prediction using functional networks,extracting information masked by chaos[J].Phys Lett A,1998,244(5):71—84. doi: 10.1016/S0375-9601(98)00312-0
    [13]
    Judd Kevin,Mees Alistair.Modeling chaotic motions of a string from experimental data[J].Phys D,1996,92(8):221—236. doi: 10.1016/0167-2789(95)00287-1
    [14]
    马军海,陈予恕.低维混沌时序非线性动力系统的预测方法及其应用研究[J].应用数学和力学,2001,22(5):441—448.
    [15]
    马军海,陈予恕.一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究(Ⅰ)[J].应用数学和力学,2001,22(11):1111—1118.
    [16]
    马军海,陈予恕.一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究(Ⅱ)[J].应用数学和力学,2001,22(12):1236—1242.
    [17]
    Pilgram Bernet,Judd Kevin,Mees Alistair.Modelling the dynamics of nonlinear times series using canonical variate analysis[J].Phys D,2002,170(9):103—117. doi: 10.1016/S0167-2789(02)00534-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2559) PDF downloads(721) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return