WU Chui-jie, LIAO Shi-jun, LU Xi-yun. The ACFD11 Special Issue Preface[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1-1.
Citation:
WU Chui-jie, LIAO Shi-jun, LU Xi-yun. The ACFD11 Special Issue Preface[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1-1.
WU Chui-jie, LIAO Shi-jun, LU Xi-yun. The ACFD11 Special Issue Preface[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1-1.
Citation:
WU Chui-jie, LIAO Shi-jun, LU Xi-yun. The ACFD11 Special Issue Preface[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1-1.
The ACFD11 Special Issue Preface
1 School of Aeronautics and Astronautics, Dalian University of Technology,Dalian 116024, P.R.China;2 School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University,Shanghai 200240, P.R.China;3 Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P.R.China
Received Date: 2016-12-01
Publish Date:
2016-12-15
Abstract
On September 16-20, 2016, the top-level exchange of research results in computational fluid dynamics studies in Asia, i.e. the 11th Asian Computational Fluid Dynamics Conference (ACFD11) was held at Dalian University of Technology, Dalian, China. Based on ACFD11, Applied Mathematics and Mechanics invited Prof. Wu Chui-jie from Dalian University of Technology, Prof. Liao Shi-jun from Shanghai Jiao Tong University and Prof. Lu Xi-yun from University of Science and Technology of China as guest editors to compile this Special Issue of ACFD11 on Engineering Computational Fluid Dynamics. The issue carries the latest research results, to help exchange innovative ideas and share theoretical and applied frontiers of computation in fluid and heat transfer sciences.
References
Relative Articles
[1] ZHENG Senwei, KOU Jiaqing, ZHANG Weiwei. A Mixed-Precision GMRES Acceleration Algorithm for Large Sparse Matrices in Fluid Dynamics Simulation [J]. Applied Mathematics and Mechanics, 2025, 46(1): 40-54. doi: 10.21656/1000-0887.450167
[2] YU Yun-long, LIN Zhong, WANG Rui-li, LIU Quan, CHEN Xing-ding. A Method of Manufacturing Solutions for Verification of Lagrangian Radiation Hydrodynamic Codes [J]. Applied Mathematics and Mechanics, 2015, 36(1): 110-118. doi: 10.3879/j.issn.1000-0887.2015.01.010
[3] GUAN Hui, SUN Xue-jin, XIONG Ying, WEI Ke-jing, YANG Qi-dong. Computational Fluid Dynamics Numerical Simulation of an Ultrasonic Velocimeter [J]. Applied Mathematics and Mechanics, 2014, 35(12): 1363-1372. doi: 10.3879/j.issn.1000-0887.2014.12.008
[4] XIE Yong-hui, WANG Mo-ran, XIE Gong-nan. Forwords [J]. Applied Mathematics and Mechanics, 2014, 35(3): 1-2.
[5] Forewords of Special Issue : Progress in Large Wind Turbine Aerodynamics [J]. Applied Mathematics and Mechanics, 2013, 34(10): 1-2.
[6] ZHANG Peng, WANG Zhuo, S.C.Wong. Fluid Dynamics Traffic Flow Models and Their Related Non-Linear Waves [J]. Applied Mathematics and Mechanics, 2013, 34(1): 85-97. doi: 10.3879/j.issn.1000-0887.2013.01.009
[7] ZHANG Zhen-yu, ZHAO Ning, ZHONG Wei, WANG Long, XU Bo-feng. Progresses in Application of Computational Fluid Dynamics to Large Scale Wind Turbine Aerodynamics [J]. Applied Mathematics and Mechanics, 2013, 34(10): 1048-1058. doi: 10.3879/j.issn.1000-0887.2013.10.005
[8] LI Shu-feng, ZHANG Peng, Wong S C. Conservation Form of Helbing’s Fluid Dynamic Traffic Flow Model [J]. Applied Mathematics and Mechanics, 2011, 32(9): 1037-1045. doi: 10.3879/j.issn.1000-0887.2011.09.003
[9] YUAN Yi-rang, LI Chang-feng, LIU Yun-xin, MA Li-qin. Numerical Method and Analysis of Computational Fluid Mechanics for Photoelectric Semiconducting Detector [J]. Applied Mathematics and Mechanics, 2009, 30(8): 927-938. doi: 10.3879/j.issn.1000-0887.2009.08.005
[10] LIU Fa-gui. Life-Span of Classical Solutions for One Dimensional Hydromagnetic Flow [J]. Applied Mathematics and Mechanics, 2007, 28(4): 462-470.
[11] LUO Zhen-dong, MAO Yun-kui, ZHU Jiang. Nonlinear Galerkin Mixed Element Methods for the Stationary Incompressible Magnetohydrodynamics [J]. Applied Mathematics and Mechanics, 2006, 27(12): 1486-1496.
[12] DONG Li-ming, SHI Yi-peng. The Formation of Shock Waves of the Equations of Magnetohydrodynamics [J]. Applied Mathematics and Mechanics, 2001, 22(9): 959-968.
[13] HE Ji-huan. A Universal Variational Formulation for Two Dimensional Fluid Mechanics [J]. Applied Mathematics and Mechanics, 2001, 22(9): 891-897.
[14] Shen Min. Variational Principles in Hydrodynamics of a Non-Newtonian Fluid [J]. Applied Mathematics and Mechanics, 1998, 19(10): 891-896.
[15] Guo Zhong-san. Fluid Mechanics of Microvascular Vasomotion and the Effects of Blood Viscoelasticity [J]. Applied Mathematics and Mechanics, 1992, 13(2): 157-163.
[16] Shen Hui-chuan. The Theory of Functions of a Complex Variable under Dirac-Pauli Representation and Its Application in Fluid Dynamics(Ⅰ) [J]. Applied Mathematics and Mechanics, 1986, 7(4): 365-382.
[17] Shen Hui-chuan. Solutions of Magnetohydrodynamics Equations——The Theory of Functions of a Complex Variable under Dirac-Pauli Representation and Its Application in Fluid Dynamics(IV) [J]. Applied Mathematics and Mechanics, 1986, 7(9): 801-811.
[18] Guo Ben-tie, Ying Yu-yan, Chen Bang-guo, Xu Bao-zhi. Application of Shooting Methods for Two-Point Boundary Value Problems of Ordinary Differential Equations with Parameters in Hydrodynamics [J]. Applied Mathematics and Mechanics, 1985, 6(3): 247-254.
[19] Chien Wei-zhang. Variational Principles and Generalized Variational Principles in Hydrodynamics of Viscous Fluids [J]. Applied Mathematics and Mechanics, 1984, 5(3): 305-322.
[20] Chang Qian-shun. A Two-Dimensional Lagrangian Difference Method of Movable Meshes——A Computing Method for Compressible Radiational Hydrodynamic Equations with Several Materials [J]. Applied Mathematics and Mechanics, 1983, 4(2): 255-267.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 16.4 % FULLTEXT : 16.4 % META : 81.6 % META : 81.6 % PDF : 2.0 % PDF : 2.0 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.8 % 其他 : 8.8 % 其他 : 0.4 % 其他 : 0.4 % China : 0.7 % China : 0.7 % Discovery Bay : 0.1 % Discovery Bay : 0.1 % 上海 : 0.3 % 上海 : 0.3 % 伊犁哈萨克自治州 : 0.1 % 伊犁哈萨克自治州 : 0.1 % 内华达州 : 0.4 % 内华达州 : 0.4 % 北京 : 2.5 % 北京 : 2.5 % 南京 : 0.9 % 南京 : 0.9 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 天津 : 0.2 % 天津 : 0.2 % 太原 : 0.1 % 太原 : 0.1 % 宣城 : 0.1 % 宣城 : 0.1 % 广州 : 0.3 % 广州 : 0.3 % 弗吉 : 0.3 % 弗吉 : 0.3 % 张家口 : 2.7 % 张家口 : 2.7 % 德州 : 0.6 % 德州 : 0.6 % 本溪 : 0.1 % 本溪 : 0.1 % 杭州 : 0.1 % 杭州 : 0.1 % 武汉 : 0.2 % 武汉 : 0.2 % 洛杉矶 : 0.4 % 洛杉矶 : 0.4 % 深圳 : 0.3 % 深圳 : 0.3 % 漯河 : 0.1 % 漯河 : 0.1 % 石家庄 : 0.4 % 石家庄 : 0.4 % 芒廷维尤 : 9.5 % 芒廷维尤 : 9.5 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 68.6 % 西宁 : 68.6 % 西安 : 0.1 % 西安 : 0.1 % 运城 : 0.7 % 运城 : 0.7 % 郑州 : 0.2 % 郑州 : 0.2 % 长治 : 0.1 % 长治 : 0.1 % 阳泉 : 0.1 % 阳泉 : 0.1 % 阿什本 : 0.2 % 阿什本 : 0.2 % 其他 其他 China Discovery Bay 上海 伊犁哈萨克自治州 内华达州 北京 南京 南宁 哥伦布 天津 太原 宣城 广州 弗吉 张家口 德州 本溪 杭州 武汉 洛杉矶 深圳 漯河 石家庄 芒廷维尤 芝加哥 苏州 西宁 西安 运城 郑州 长治 阳泉 阿什本