Citation: | LIU Ru-xun, WU Ling-ling. Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(7): 801-809. |
[1] |
Kahan W,LI Ren-chang.Unconventional schemes for a class of ordinary differential equations with applications to the Korteweg-de Vries equation[J].J Math Phys,1997,134(6):316—331.
|
[2] |
Gardner L R T,Gardner G A.Solitary waves of regularised long-wave equation[J].J Math Phys,1990,91:441—459.
|
[3] |
Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16—42. doi: 10.1016/0021-9991(92)90324-R
|
[4] |
Kobayashi M H.On a class of Pade finite volume methods[J].Journal of Computational Physics,1999,156(1):137—180. doi: 10.1006/jcph.1999.6376
|
[5] |
Hixon R.Prefactored small-stencil compact schemes[J]. Journal of Computational Physics,2000,165(2):522—541. doi: 10.1006/jcph.2000.6631
|
[6] |
Carpenter M H.Methodology and application to high-order compact schemes[J].Journal of Computational Physics,1994,111:220—236. doi: 10.1006/jcph.1994.1057
|
[7] |
Goedheer W J,Potters J H H M.A compact finite scheme on a non-equidistant mesh[J].Journal of Computational Physics,1985,61:269—279. doi: 10.1016/0021-9991(85)90086-5
|
[8] |
Ganosa J,Gazdag J.The Korteweq-de Vries-Burgers equation[J].Journal of Computational Physics,1977,23:293—403.
|
[9] |
忻孝康,刘儒勋,蒋伯城.计算流体动力学[M].长沙:国防科技大学出版社,1989.
|
[10] |
刘儒勋,舒其望.计算流体力学的某些新方法[M].北京:科学出版社,2003.
|
[1] | WANG Yahui, GUO Cheng, DU Yulong. A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping[J]. Applied Mathematics and Mechanics, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150 |
[2] | GAO Jingying, HE Siriguleng, QING Mei, Eerdunbuhe. An Efficient Compact Difference Scheme for the Symmetric Regularized Long Wave Equation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 412-424. doi: 10.21656/1000-0887.440374 |
[3] | QIU Tianwei, WEI Guangmei, SONG Yuxin, WANG Zhen. Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks[J]. Applied Mathematics and Mechanics, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122 |
[4] | FENG Yihu1, 2. Solitary Travelling Wave Solutions to Strongly Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2019, 40(1): 89-96. doi: 10.21656/1000-0887.390054 |
[5] | LI Bowen, DING Jieyu, LI Yanan. An L-Stable Method for Differential-Algebraic Equations of Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2019, 40(7): 768-779. doi: 10.21656/1000-0887.400038 |
[6] | FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, MO Jia-qi. Travelling Wave Solution to a Class of Generalized Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2015, 36(3): 315-324. doi: 10.3879/j.issn.1000-0887.2015.03.009 |
[7] | SHI Juan-rong, WU Qin-kuan, MO Jia-qi. Asymptotic Travelling Wave Soliton Solutions for Nonlinear Disturbed Generalized NNV Systems[J]. Applied Mathematics and Mechanics, 2015, 36(9): 1003-1010. doi: 10.3879/j.issn.1000-0887.2015.09.011 |
[8] | SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010 |
[9] | ZOU Li, WANG Zhen, LIANG Hui, ZONG Zhi, ZOU Hao. Finding New Types of Peakon Solutions for FitzHugh-Nagumo Equation by an Analytical Technique[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1141-1149. doi: 10.3879/j.issn.1000-0887.2013.11.003 |
[10] | ZOU Li, WANG Zhen, ZONG Zhi, ZOU Dong-yang, ZHANG Shuo. Solving shock wave with discontinuity by enhanced differential transform method (EDTM)[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008 |
[11] | Zainal Abdul Aziz, Dennis Ling Chuan Ching, Faisal Salah Yousif. Bifurcation of Rupturing Path by the Nonlinear Damping Force[J]. Applied Mathematics and Mechanics, 2011, 32(3): 271-278. doi: 10.3879/j.issn.1000-0887.2011.03.003 |
[12] | TU Guo-hua, YUAN Xiang-jiang, LU Li-peng. Developing Shock-Capturing Difference Methods[J]. Applied Mathematics and Mechanics, 2007, 28(4): 433-440. |
[13] | TU Guo-hua, YUAN Xiang-jiang, XIA Zhi-qiang, HU Zhen. A Class of Compact Upwind TVD Difference Schemes[J]. Applied Mathematics and Mechanics, 2006, 27(6): 675-682. |
[14] | LI Chun-jing, GU Chuan-qing. Epsilon-Algorithm and Eta-Algorithm of Generalized Inverse Function-Valued Padé Approximants Using for Solution of Integral Equations[J]. Applied Mathematics and Mechanics, 2003, 24(2): 197-204. |
[15] | ZHANG Ren, SHA Wen-yu, JIANG Guo-rong, WANG Ji-guang. Soliton-Like Thermal Source Forcing and Singular Response of Atmosphere and Oceans to It[J]. Applied Mathematics and Mechanics, 2003, 24(6): 631-636. |
[16] | TANG Deng-bin, XIA Hao. Nonlinear Evolution Analysis of T-S Disturbance Wave at Finite Amplitude in Nonparallel Boundary Layers[J]. Applied Mathematics and Mechanics, 2002, 23(6): 588-596. |
[17] | TIAN Li-xin, XU Gang, LIU Zeng-rong. The Concave or Convex Peaked and Smooth Soliton Solutions of Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2002, 23(5): 497-506. |
[18] | GU Chuan-qing, LI Chun-jing. Computation Formulas of Generalised Inverse Padé Approximant Using for Solution of Integral Equations[J]. Applied Mathematics and Mechanics, 2001, 22(9): 952-958. |
[19] | Xu Bao-zhi, Fang Xiao-wei. The Expression of Soliton Solution for Sine-Gordon Equation[J]. Applied Mathematics and Mechanics, 1992, 13(6): 515-518. |
[20] | Yang Dan-ping. A Coupling Method of Difference with High Order Accuracy and Boundary Integral Equation for Evolutionary Equation and Its Error Estimates[J]. Applied Mathematics and Mechanics, 1991, 12(9): 831-844. |