LIU Ru-xun, WU Ling-ling. Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(7): 801-809.
Citation: LIU Ru-xun, WU Ling-ling. Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(7): 801-809.

Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations

  • Received Date: 2003-09-03
  • Rev Recd Date: 2005-03-11
  • Publish Date: 2005-07-15
  • A set of small-stencil new Pad schemes with the same denominator are presented to solve high-order non-linear evoltuion equations. Using this scheme, the fourth-order precision cannot only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.
  • loading
  • [1]
    Kahan W,LI Ren-chang.Unconventional schemes for a class of ordinary differential equations with applications to the Korteweg-de Vries equation[J].J Math Phys,1997,134(6):316—331.
    [2]
    Gardner L R T,Gardner G A.Solitary waves of regularised long-wave equation[J].J Math Phys,1990,91:441—459.
    [3]
    Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16—42. doi: 10.1016/0021-9991(92)90324-R
    [4]
    Kobayashi M H.On a class of Pade finite volume methods[J].Journal of Computational Physics,1999,156(1):137—180. doi: 10.1006/jcph.1999.6376
    [5]
    Hixon R.Prefactored small-stencil compact schemes[J]. Journal of Computational Physics,2000,165(2):522—541. doi: 10.1006/jcph.2000.6631
    [6]
    Carpenter M H.Methodology and application to high-order compact schemes[J].Journal of Computational Physics,1994,111:220—236. doi: 10.1006/jcph.1994.1057
    [7]
    Goedheer W J,Potters J H H M.A compact finite scheme on a non-equidistant mesh[J].Journal of Computational Physics,1985,61:269—279. doi: 10.1016/0021-9991(85)90086-5
    [8]
    Ganosa J,Gazdag J.The Korteweq-de Vries-Burgers equation[J].Journal of Computational Physics,1977,23:293—403.
    [9]
    忻孝康,刘儒勋,蒋伯城.计算流体动力学[M].长沙:国防科技大学出版社,1989.
    [10]
    刘儒勋,舒其望.计算流体力学的某些新方法[M].北京:科学出版社,2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2762) PDF downloads(676) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return