ZHONG Zheng. Analysis of a Partially Debonded Elliptic Inhomogeneity in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2004, 25(4): 405-416.
Citation: ZHONG Zheng. Analysis of a Partially Debonded Elliptic Inhomogeneity in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2004, 25(4): 405-416.

Analysis of a Partially Debonded Elliptic Inhomogeneity in Piezoelectric Materials

  • Received Date: 2002-08-23
  • Rev Recd Date: 2003-09-16
  • Publish Date: 2004-04-15
  • A generalized solution was obtained for the partially debonded elliptic inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric loading using the complex variable method.It was assumed that the interfacial debonding induced an electrically impermeable crack at the interface.The principle of conformal transformation and analytical continuation were employed to reduce the formulation into two Riemann-Hilbert problems.This enabled the determination of the complex potentials in the inhomogeneity and the matrix by means of series of expressions.The resulting solution was then used to obtain the electroelastic fields and the energy release rate involving the debonding at the inhomogeneity-matrix interface.The validity and versatility of the current general solution have been demonstrated through some specific examples such as the problems of perfectly bonded elliptic inhomogeneity,totally debonded elliptic inhomogeneity,partially debonded rigid and conducting elliptic inhomogeneity,and partially debonded circular inhomogeneity.
  • loading
  • [1]
    Wang B. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J]. Int J Solids Structures,1992,29(3): 293—308. doi: 10.1016/0020-7683(92)90201-4
    [2]
    Benveniste Y. The determination of the elastic and electric fields in a piezoelectric inhomogeneity [J].J Appl Phys, 1992,72(3):1086—1095. doi: 10.1063/1.351784
    [3]
    Dunn M,Taya M. Micromechanics predictions of the effective electro-elastic moduli of piezoelectric composites [J].Int J Solids Structures, 1993, 30(2): 161—175. doi: 10.1016/0020-7683(93)90058-F
    [4]
    Zhang T Y,Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material [J].Int J Solids Structures,1996,33(3): 343—359. doi: 10.1016/0020-7683(95)00046-D
    [5]
    Meguid S A,Zhong Z. Electroelastic analysis of a piezoelectric elliptic inhomogeneity [J].Int J Solids Structures, 1997,34(26): 3401—3414. doi: 10.1016/S0020-7683(96)00221-1
    [6]
    Zhong Z,Meguid S A. Interfacial debonding of a circular inhomogeneity in piezoelectric materials[J].Int J Solids Structures, 1997,34(16): 1965—1984. doi: 10.1016/S0020-7683(96)00164-3
    [7]
    ZHONG Zheng. Electroelastic analysis of a partially debonded inhomogeneity in piezoelectric materials[J].Key Engineering Materials,1998,145-149(2): 971—976. doi: 10.4028/www.scientific.net/KEM.145-149.971
    [8]
    Deng W,Meguid S A. Interfacial debonding of an elliptic inhomogeneity in piezoelectric solids [J]. ASME J Appl Mech,1998,66(4):1037—1040.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2619) PDF downloads(690) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return