F. Ayaz. Axisymmetric Flow Through a Permeable Near-Sphere[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1198-1208.
Citation: F. Ayaz. Axisymmetric Flow Through a Permeable Near-Sphere[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1198-1208.

Axisymmetric Flow Through a Permeable Near-Sphere

  • Received Date: 2004-06-18
  • Publish Date: 2005-10-15
  • An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stoke sequation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondefor med sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeabilty of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisy mmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid ornear-sphere.
  • loading
  • [1]
    Rubenstein D I,Koehl M A R.The mechanism of filter feeding:some theoretical consideration[J].The American Naturalist,1977,111:981—994. doi: 10.1086/283227
    [2]
    Spielman L A.Particle capture from low speed laminar flows[J].Ann Rev Fluid Mech,1977,9:297—319. doi: 10.1146/annurev.fl.09.010177.001501
    [3]
    Craig D A,Chance M M.Filter feeding in larvea of simuliidae(diftera:culicomorpfa):aspects of functional morphplogy and hydro-dynamics[J].Can J Zool,1982,60:712—724. doi: 10.1139/z82-100
    [4]
    Silvester N R.Some hydrodynamic aspects of filter feeding with rectangular-mesh nets[J].J Theoret Biol,1983,103:265—286. doi: 10.1016/0022-5193(83)90028-0
    [5]
    Happel J,Brenner H.Low Reynolds Number Hydrodynamics[M].Englewood Cliffs:Prantice-Hall,1965.
    [6]
    Batchelor G K.An Introduction to Fluid Dynamics[M].Cambridge:Cambridge University Press,1967.
    [7]
    Payne L E,Pell W H.The Stokes problem for a class of axially symmetric bodies[J].J Fluid Mech,1960,7:529—544. doi: 10.1017/S002211206000027X
    [8]
    Stokes G G.On the effect of the internal friction of fluids on the motion of pendulums[J].Trans Cambridge Phil Soc,1851,9:8—106.
    [9]
    Oberbeck A J.ber stationre flüssigkeitsbewegungen mit berücksichtigung d'er inner reibung[J].J Reine Angew Math,1876,81:62—80.
    [10]
    Jeffery G B.The motion of ellipsoidal particles immersed in a viscous fluid[J].Proc Roy Soc A,1922,102:161—179. doi: 10.1098/rspa.1922.0078
    [11]
    Ray M.On the problem of motion of a circular disk in a viscous liquid[J].Phil Mag,1936,21(7):546—564.
    [12]
    Nir A,Acivos A.On the creeping motion of two arbitrary sized touching spheres in a linear shear field[J].J Fluid Mech,1973,59:209—221. doi: 10.1017/S0022112073001527
    [13]
    Taylor T D,Acrivos A.The Stoks flow past an arbitrary particle in the slightly deformed sphere[J].Chem Eng Sci,1964,19:445—451. doi: 10.1016/0009-2509(64)85071-5
    [14]
    Brenner H.The Stokes resistance of a slightly deformed sphere[J].Chem Eng Sci,1964,19:519—539. doi: 10.1016/0009-2509(64)85045-4
    [15]
    Richardson J,Power H.The low Reynolds number motion of a porous particle near a plane interface[J].Appl Math Modeling,1996,20(11):829—837. doi: 10.1016/S0307-904X(96)00089-3
    [16]
    Zlatonowski T.Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model[J].Q J Mech Appl Math,1999,52(1):111—126. doi: 10.1093/qjmam/52.1.111
    [17]
    Zlatonowski T.Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model[J].Q J Mech Appl Math,2000,53(1):173. doi: 10.1093/qjmam/53.1.173
    [18]
    Sampson R A.On Stokes's current function[J].Phil Trans,Ser A,1891,182:449—518. doi: 10.1098/rsta.1891.0012
    [19]
    Leonow A I.The slow stationary flow of a viscous fluid about a porous sphere[J].PMM,1962,26(3):564—566.
    [20]
    Wolfersdorf L V.Stokes flow past a sphere with permeable surface[J].Z Angew Math Mech,1989,69(2):111—112. doi: 10.1002/zamm.19890690220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2691) PDF downloads(468) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return