P. Dechaumphai, S. Phongthanapanich. Adaptive Delaunay Triangulation With Multidimensional Dissipation Scheme for High-Speed Compressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1216-1228.
Citation: P. Dechaumphai, S. Phongthanapanich. Adaptive Delaunay Triangulation With Multidimensional Dissipation Scheme for High-Speed Compressible Flow Analysis[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1216-1228.

Adaptive Delaunay Triangulation With Multidimensional Dissipation Scheme for High-Speed Compressible Flow Analysis

  • Received Date: 2004-03-10
  • Publish Date: 2005-10-15
  • Adaptive Delaunay triangulation is combined with the cell-centered upwinding algorithm to analyze inviscid high-speed compressible flow problems. The multidimensional dissipation scheme was developed and included in the upwinding algorithm for unstructured triangular meshes to improve the computed shock wave resolution. The solution accuracy was further improved by coupling an error estimation procedure to a remeshing algorithm that generates small elements in regions with large change of solution gradients, and at the same time, larger elements in other regions. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accurarcy. Efficiency of the combined procedure was evaluated by analyzing supersonic shocks and shock propagation behaviors for both the steady and unsteady high-speed compressible flows.
  • loading
  • [1]
    Anderson J D.Modern Compressible Flow With Historical Prospective[M].2nd edition.New York:McGraw-Hill,1990.
    [2]
    Donea J.A Taylor-Galerkin method for convective transport problems[J].Internat J Numer Methods in Engng,1984,20(1):101—119. doi: 10.1002/nme.1620200108
    [3]
    Huges T J R.Recent Progress in the Development and Understanding of SUPG Methods With Special Reference to the Compressible Euler and Navier-Stokes Methods in Fluids[M].New York:John Wiley,1987,1261—1275.
    [4]
    Jiang B N,Carey G F.A stable last-squares finite element method for non-linear hyperbolic problems[J].Internat J Numer Methods in Fluids,1988,8(9):933—942. doi: 10.1002/fld.1650080805
    [5]
    Gnoffo P A.Application of program LUARA to three-dimensional AOTV flow fields[R]. AIAA Paper 86-0565,1986.
    [6]
    Roe P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].J Comput Phys,1981,43(2):357—372. doi: 10.1016/0021-9991(81)90128-5
    [7]
    Quirk J J.A contribution to the great Riemann solver debate[J].Internat J Numer Methods in Fluids,1994,18(6):555—574. doi: 10.1002/fld.1650180603
    [8]
    Sanders R,Morano E,Druguet M C.Multidimensional dissipation for upwind schemes:stability and applications to gas dynamics[J].J Comput Phys,1998,145(2):511—537. doi: 10.1006/jcph.1998.6047
    [9]
    Bowyer A.Computing Dirichlet tessellations[J].Comput J,1981,24(2):162—166. doi: 10.1093/comjnl/24.2.162
    [10]
    Watson D F.Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes[J].Comput J,1981,24(2):167—172. doi: 10.1093/comjnl/24.2.167
    [11]
    Weatherill N P,Hassan O.Efficient three-dimension Delaunay triangulation with automatic point creation and imposed boundary constraints[J].Internat J Numer Methods in Engng,1994,37(12):2005—2039. doi: 10.1002/nme.1620371203
    [12]
    Karamete B K,Tokdemir T,Ger M.Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming[J].Internat J Numer Methods in Engng,1997,40(2):251—268. doi: 10.1002/(SICI)1097-0207(19970130)40:2<251::AID-NME62>3.0.CO;2-U
    [13]
    Peraire J,Vahdati M,Morgan K,et al.Adaptive remeshing for compressible flow computations[J].J Comput Phys,1987,72(2):449—466. doi: 10.1016/0021-9991(87)90093-3
    [14]
    Berger M J,Colella P.Local adaptive mesh refinement for shock hydrodynamics[J].J Comput Phys,1989,82(1):67—84.
    [15]
    Jin H,Wiberg N E.Two-dimensional mesh generation,adaptive remeshing and refinement[J].Internat J Numer Methods in Engng,1990,29(7):1501—1526. doi: 10.1002/nme.1620290709
    [16]
    Probert J,Hassan O,Jeraire J,et al.An adaptive finite element method for transient compressible flows[J].Internat J Numer Methods in Engng,1991,32(5):1145—1159. doi: 10.1002/nme.1620320514
    [17]
    Dechaumphai P,Morgan K.Transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement[A].In:Thornton E A Ed.Thermal Structures and Materials for High-Speed Flight[C].Washington D C:American Institute of Aeronautics and Astronautics,1992,205—228.
    [18]
    Quirk J J,Hanebutte U R.A parallel adaptive mesh refinement algorithm[R]. ICASE Report 93-63,1993.
    [19]
    Venkatakrishnan V.A perspective on unstructured grid flow solvers[R]. AIAA paper 95-0667,1995.
    [20]
    Sun M,Takayama K.Conservative smoothing on an adaptive quadrilateral grid[J].J Comput Phys,1999,150(1):143—180. doi: 10.1006/jcph.1998.6167
    [21]
    Hirsch C.Numerical Computation of Internal and External Flows[M].Vol 2.New York:John Wiley & Sons,1998.
    [22]
    Shyue K M.An efficient shock-capturing algorithm for compressible multicomponent problems[J].J Comput Phys,1998,142(1):208—242. doi: 10.1006/jcph.1998.5930
    [23]
    Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49(3):357—393. doi: 10.1016/0021-9991(83)90136-5
    [24]
    Frink N T,Parikh P,Pirzadeh S.A fast upwind solver for the Euler equations on three-dimensional unstructured meshes[R]. AIAA Paper-91-0102;In:29th Aerospace Sciences Meeting and Exhibit[C].Reno,Navada,1991.
    [25]
    Frink N T,Pirzadeh S Z.Tetrahedral finite-volume solutions to the Navier-Stokes equations on comlex configurations[R]. NASA/TM-1998-208961,1998.
    [26]
    Vekatakrishnan V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J].J Comput Phys,1995,118(1):120—130. doi: 10.1006/jcph.1995.1084
    [27]
    Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].J Comput Phys,1988,77(2):439—471. doi: 10.1016/0021-9991(88)90177-5
    [28]
    Linde T,Roe P L.Robust Eluer codes[R]. AIAA Paper-97-2098;In:13th Compuations Fluid Dynamics Conference[C].Snowmass Village,CO,1997.
    [29]
    Joe B,Simpson R B.Triangular meshes for regions of complicated shape[J].Internat J Numer Methods in Engng,1986,23(5):751—778. doi: 10.1002/nme.1620230503
    [30]
    Frey W H.Selective refinement:a new strategy for automatic node placement in graded triangular meshes[J].Internat J Numer Methods in Engng,1987,24(11):2183—2200. doi: 10.1002/nme.1620241111
    [31]
    Sun M,Takayama K.Error localization in solution-adaptive grid methods[J].J Comput Phys,2003,190(1):346—350. doi: 10.1016/S0021-9991(03)00278-X
    [32]
    Sod G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].J Comput Phys,1978,27(1):1—31. doi: 10.1016/0021-9991(78)90023-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2580) PDF downloads(628) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return