ZHANG Rong-ye. Lagrangian Mechanics on K hler Manifolds[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1236-1246.
Citation: ZHANG Rong-ye. Lagrangian Mechanics on K hler Manifolds[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1236-1246.

Lagrangian Mechanics on K hler Manifolds

  • Received Date: 2004-11-10
  • Rev Recd Date: 2005-06-12
  • Publish Date: 2005-10-15
  • Lagrangian mechanics on K hler manifolds were discussed, and the complex mathe matical aspects of Lagrangian operator, Lagrange's equation, the action functional, Hamilton's principle and Hamilton's equation, and so on were given.
  • loading
  • [1]
    甘特马赫尔[WT5”BZ]. Ф Р.分析力学[M].钟奉俄,薛问西 译.北京:人民教育出版社,1963,1—163.
    [2]
    Arnold V I.Mathematical Methods of Classical Mechanics[M].New York:Springer-Verlag,1978,1—300.
    [3]
    Arnold V I.Mathematical Aspect of Classical and Celestial Mechanics.Encyclopaedia of Mathematical Sciences,Vol 3.Dynamical Systems3[M].New York:Springer-Verlag,1985,1—48.
    [4]
    Curtis W D,Miller F R.Differential Manifolds and Theoretical Physics[M].Orlando,Florida:Academic Press Inc,1985,1—191.
    [5]
    Dubrorin B A,Fomenko A T,Novikov S P.Modern Geometry—Methods and Application.PartsⅠ,Ⅱ[M].New York:Springer-Verlag,New York Inc,1984,1—374,1—357.
    [6]
    von Westenholz C.Differential Forms in Mathematical Physics[M].Amsterdam,New York,Oxford:North-Holland Publishing Company,1978,335—439.
    [7]
    张荣业.关于Khler流形上的牛顿力学[J].应用数学和力学,1996,17(8):709—720.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2866) PDF downloads(656) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return