Citation: | GAO Ping, GUO Bo-ling. Smale Horseshoes and Chaos in Discretized Perturbed NLS Systems(Ⅱ)——Smale Horseshoes[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1271-1277. |
[1] |
高平,郭柏灵.离散扰动NLS方程组的Smale马蹄与混沌(Ⅰ)—Poincaré映射[J].应用数学和力学,2005,26(11):1261—1270. doi: 10.shtml
|
[2] |
Wiggins S.Global Bifurcations and Chaos, Analytic Methods[M].New York:Springer-Verlag,1988.
|
[3] |
Li Y,Wiggins S.Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II, Symbolic dynamics[J].J Nonlinear Sci,1997,7(4):315—370. doi: 10.1007/BF02678141
|
[1] | SUN Yunqing, WU Zhiqiang, ZHANG Guoqi, WANG Yuancen. Bifurcation Analysis of Dual-Mode Dynamics for Marine Risers[J]. Applied Mathematics and Mechanics, 2020, 41(5): 480-490. doi: 10.21656/1000-0887.400257 |
[2] | DU Weixia, ZHANG Sijin, YIN Shan. An Intermittent Chaos Control Method for a Class of Symmetric Impact Systems[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1149-1158. doi: 10.21656/1000-0887.380292 |
[3] | GUO Yong, XIE Jian-hua. N-S Bifurcation of an Oscillator With Dry Friction in 1∶4 Strong Resonance[J]. Applied Mathematics and Mechanics, 2013, 34(1): 18-26. doi: 10.3879/j.issn.1000-0887.2013.01.003 |
[4] | SHEN Shou-feng, ZHANG Jun. Homoclinic Orbits for Some (2+1)-Dimensional Nonlinear SchrLdinger-Like Equations[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1254-1260. |
[5] | ZHANG Tian-si, ZHU De-ming. Bifurcations of Double Homoclinic Flip Orbits With Resonant Eigenvalues[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1353-1362. |
[6] | YUE Yuan, XIE Jian-hua. Symmetry, Cusp Bifurcation and Chaos of an Impact Oscillator Between Two Rigid Sides[J]. Applied Mathematics and Mechanics, 2007, 28(8): 991-998. |
[7] | HE Hua, FENG Qi, SHEN Rong-ying, WANG Yu. Stochastic Discrete Model of a Two-Stage Isolation System With Rigid Limiters[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1093-1100. |
[8] | LUO Hai-ying, LI Ji-bin. What Are the Separatrix Values Named by Leontovich on Homoclinic Bifurcation[J]. Applied Mathematics and Mechanics, 2005, 26(4): 418-425. |
[9] | ZHANG Jun, GUO Bo-ling, SHEN Shou-feng. Homoclinic Orbits of the Davey-Stewartson Equations[J]. Applied Mathematics and Mechanics, 2005, 26(2): 127-129. |
[10] | GAO Ping, GUO Bo-ling. Smale Horseshoes and Chaos in Discretized Perturbed NLS Systems(Ⅰ)——Poincaré Map[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1261-1270. |
[11] | JIN Yin-lai, ZHU De-ming. Twisted Bifurcations and Stability of Homoclinic Loop With Higher Dimensions[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1076-1082. |
[12] | WANG Mao-nan, XU Zhen-yuan. On the Homoclinic Orbits in a Class of Two-Degree of Freedom Systems Under the Resonance Conditions[J]. Applied Mathematics and Mechanics, 2001, 22(3): 295-306. |
[13] | Cao Yongluo, Wang Lanyu. Abundance of Uenimodal Maps With Dense Critical Orbit and Prefixed Critical Orbit[J]. Applied Mathematics and Mechanics, 2000, 21(4): 348-352. |
[14] | Shu Xuefeng, Han Qiang, Yang Guitong. The Double Mode Model of the Chaotic Motion for a Large Deflection Plate[J]. Applied Mathematics and Mechanics, 1999, 20(4): 346-350. |
[15] | Han Qiang, Zhang Shanyuan, Yang Guitong. The Study on the Chaotic Motion of a Nonlinear Dynamic System[J]. Applied Mathematics and Mechanics, 1999, 20(8): 776-782. |
[16] | Han Qiang, Zhang Nianmei, Yang Guitong. Chaotic Motion of a Nonlinear Thermoelastic Elliptic Plate[J]. Applied Mathematics and Mechanics, 1999, 20(9): 896-901. |
[17] | Zhang Wei, Huo Quan-zhong, Li Li. Heteroclinic Orbit and Subharmonic Bifurcations and Chaos of Nonlinear Oscillator[J]. Applied Mathematics and Mechanics, 1992, 13(3): 199-208. |
[18] | Dong Guaug-mao, Liu Zeng-rong, Xu Zheng-fan. Stochasticity near Resonances in a kind of Near-lntegrable Hamiltonian Systems Based on Smale Horseshoes[J]. Applied Mathematics and Mechanics, 1992, 13(1): 11-16. |
[19] | Cheng Fu-de. A Group of Chaotic Motion of Soft Spring Quadratic Duffing Equations[J]. Applied Mathematics and Mechanics, 1991, 12(12): 1081-1085. |
[20] | Xu Zhen-yuan, Li Li. Meinikov Function and Poincaré Map[J]. Applied Mathematics and Mechanics, 1988, 9(12): 1055-1063. |