HE Ze-rong, WANG Mian-se, WANG Feng. Optimal Dynamical Balance Harvesting for a Class of Renewable Resources System[J]. Applied Mathematics and Mechanics, 2004, 25(4): 433-440.
Citation: HE Ze-rong, WANG Mian-se, WANG Feng. Optimal Dynamical Balance Harvesting for a Class of Renewable Resources System[J]. Applied Mathematics and Mechanics, 2004, 25(4): 433-440.

Optimal Dynamical Balance Harvesting for a Class of Renewable Resources System

  • Received Date: 2002-05-03
  • Rev Recd Date: 2003-09-09
  • Publish Date: 2004-04-15
  • An optimal utilization problem for a class of renewable resources system is investigated. Firstly,a control problem was proposed by introducing a new utility function which depends on the harvesting effort and the stock of resources.Secondly,the existence of optimal solution for the problem was discussed.Then,using a maximum principle for infinite horizon problem,a nonlinear four-dimensional differential equations system was attained.After a detailed analysis of the unique positive equilibrium solution,the existence of limit cycles for the system is demonstrated.Next a reduced system on the central manifold is carefully derived,which assures the stability of limit cycles.Finally significance of the results in bioeconomics is explained.
  • loading
  • [1]
    Clark C W.Mathematical Bioeconomics: the Optimal Management of Renewable Resources[M].2ed.New York: John Wiley & Sons,Inc, 1990, 39—340.
    [2]
    Mesterton-Gibbons M. On the optimal policy for combined harvesting of independent species[J].Natural Resources Modelling,1987,2(1):109—134.
    [3]
    Mesterton-Gibbons M. On the optimal policy for combined harvesting of predator and prey[J].Natural Resources Modelling,1988,3(1):63—89.
    [4]
    Mesterton-Gibbons M. A technique for finding optimal two-species harvesting policies[J].Ecological Modelling,1996,92(2): 235—244. doi: 10.1016/0304-3800(95)00176-X
    [5]
    Pradham T, Chaudhuri K S. A dynamical reaction model of a two-species fishery with taxation as a control instrument: a capital theoretic analysis[J].Ecological Modelling,1999,121(3):1—16. doi: 10.1016/S0304-3800(99)00062-9
    [6]
    Fan M, Wang K. Optimal harvesting policy for single population with periodic coefficients[J]. Math Biosci,1998,152(1): 165—177. doi: 10.1016/S0025-5564(98)10024-X
    [7]
    Feichtinger G, Novok A,Wirl F. Limit cycles in intertemporal adjustment models[J].J Economic Dynamics and Control, 1994,18(2):353—380. doi: 10.1016/0165-1889(94)90013-2
    [8]
    Dockner E. Local stability analysis in optimal control problems with two state variables[A]. In: Feichtinger G Ed.Optimal Control Theory and Economic Analysis[C]. Amsterdam:North-Holland, 1987, 30—45.
    [9]
    Liski M, Kort P M, Novak A. Increasing returns and cycles in fishing[J].Resources and Energy Economics,2001,23(4):241—258. doi: 10.1016/S0928-7655(01)00038-0
    [10]
    Seierstad K, Sydsaeter A. Optimal Control Theory With Economic Applications[M].Amsterdam: North-Holland, 1987,8—25.
    [11]
    Carlson D, Haurie A B,Leizarowits A.Infinite Horizon Optimal Control[M]. Berlin: Springer-Verlag, 1991, 24—27.
    [12]
    Guckenheimer J, Holmes P.Nonlinear Oscillations,Dynamical Systems, and Bifurcations of Vector Fields[M]. Berlin:Springer-Verlag, 1983, 117—125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2498) PDF downloads(585) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return