MA Jun-hai, WANG Zhi-qiang, CHEN Yu-shu. Prediction Techniques of Chaotic Time Series and Its Applications at Low Noise Level[J]. Applied Mathematics and Mechanics, 2006, 27(1): 6-12.
Citation: MA Jun-hai, WANG Zhi-qiang, CHEN Yu-shu. Prediction Techniques of Chaotic Time Series and Its Applications at Low Noise Level[J]. Applied Mathematics and Mechanics, 2006, 27(1): 6-12.

Prediction Techniques of Chaotic Time Series and Its Applications at Low Noise Level

  • Received Date: 2004-05-08
  • Rev Recd Date: 2005-09-06
  • Publish Date: 2006-01-15
  • Not only the noise reduction methods of chaotic time series with noise and its reconstruction techniques were studied,but also prediction techniques of chaotic time series and its applications were discussed based on chaotic data noise reduction.First the phase space of chaotic time series was decomposed to range space and null noise space'secondly original chaotic time series was reconstrucled in range space.Lastly on the basis of the above,the order of the nonlinear model was established and the nonlinear model was made use of to predict some research.The result indicates that the nonlinear model has very strong ability of approximation function,and Chaos prediction method has certain tutorial significance to the practical problems.
  • loading
  • [1]
    Albano A M,Muench J M,Schwartz C,et al.Singular-value decomposition and the Grassberger-Procaccia algorithm[J].Phys Rev A,1988,38(6):3017—3026. doi: 10.1103/PhysRevA.38.3017
    [2]
    Martin Casdagli,Stephen Eubank,Doyne Farmer J.State space reconstruction in the presence of noise[J].Phys Ser D,1991,51(10):52—98.
    [3]
    YU De-jin,Michael Small,Robert G Harrison.Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data[J].Phys Rev Ser E,2000,61(4):3750—3756. doi: 10.1103/PhysRevE.61.3750
    [4]
    Muller T G,Timmer J.Fitting parameters in partial differential equations from partially observed noisy data[J].Physica Ser D,2002,171(5):1—7.
    [5]
    Degli Esposti Boschi C,Ortega G J,Louis E.Discriminating dynamical from additive noise in the Van der Pol oscillator[J].Physica Ser D,2002,171(5):8—18.
    [6]
    Yu A,Kravtsov E D.Surovyatkin nonlinear saturation of prebifurcation noise amplification[J].Physics Letters Ser A,2003,319(10):348—351. doi: 10.1016/j.physleta.2003.10.034
    [7]
    CAO Liang-yue,HONG Yi-guang,FANG Hai-ping,et al.Predicting chaotic timeseries with wavelet networks[J].Phys Ser D,1995,85(8):225—238.
    [8]
    Castillo E,Gutierrez J M.Nonlinear time series modeling and prediction using functional networks. extracting information masked by chaos[J].Phys Lett Ser A,1998,244(5):71—84. doi: 10.1016/S0375-9601(98)00312-0
    [9]
    Christian Schroer G,Tim Sauer, Edward Ott,et al.Predicting chaotic most of the time from embeddings with self-intersections[J].Phys Rev Lett,1998,80(7):1410—1412. doi: 10.1103/PhysRevLett.80.1410
    [10]
    马军海,陈予恕,刘曾荣.动力系统实测数据的非线性混沌模型重构[J].应用数学和力学.1999,20(11):1128—1134.
    [11]
    Kugiumtzis D,Lingjrde O C,Christophersen N.Regularized local linear prediction of chaotic timeseries[J].Phys Ser D,1998,112(6):344—360.
    [12]
    Berndt Pilgram,Kevin Judd,Alistair Mees.Modelling the ddynamics odf nonlinear timeseries using canonical variate analysis[J].Phys Ser D,2002,170(4):103—117.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2415) PDF downloads(576) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return