Citation: | LU Ying-jie, REN Ge-xue. A Symplectic Algorithm for the Dynamics of a Rigid Body[J]. Applied Mathematics and Mechanics, 2006, 27(1): 47-52. |
[1] |
冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003,271—344.
|
[2] |
Edward J Haug.Computer Aided Kinematics and Dynamics of Mechanical Systems[M].Needham Heights, Massachusetts, U S: Allyn and Bacon,1989,305—335.
|
[3] |
CHEN Shan-shin,Daniel A Tortorelli.An energy-conserving and filtering method for stiff nonlinear multibody dynamics[J].Multibody System Dynamics,2003,10(4):341—362. doi: 10.1023/A:1026237902561
|
[4] |
Elisabet V Lens,Alberto Cardona,Michel Geradin.Energy preserving time integration for constrained multibody systems[J].Multibody System Dynamics,2004,11(1):41—61. doi: 10.1023/B:MUBO.0000014901.06757.bb
|
[5] |
Chen S,Tortorelli D A,Hansen J M.Unconditionally energy stable implicit time integration: Application to multibody system analysis and design[J].International Journal for Numerical Methods in Engineering,2000,48(6):791—822. doi: 10.1002/(SICI)1097-0207(20000630)48:6<791::AID-NME859>3.0.CO;2-Z
|
[6] |
Simo J C,Tarnow N, Wong K.Exact energy-momentum conserving algorithms and sympectic schemes for nonlinear dynamics[J].Computer Methods in Applied Mechanics and Engineering,1992,100(1):63—116. doi: 10.1016/0045-7825(92)90115-Z
|
[7] |
Channell P,Scovel C.Symplectic integration of Hamiltonian systems[J].Nonlinearity,1990,3(2):231—259. doi: 10.1088/0951-7715/3/2/001
|
[8] |
Leimkuhler B,S Reich.Symplectic integration of constrained Hamiltonian systems[J].Math Comp,1994,63(208):589—605. doi: 10.1090/S0025-5718-1994-1250772-7
|
[9] |
Barth E,Leimkuhler B.Symplectic methods for conservative multibody systems[A].In:Mardsen J E,Patrick G W,Shadwick W F.Integration Algorithms for Classical Mechanics, Fields Institute Communications[C].U S:American Mathematical Society,1996,25—43.
|
[10] |
Leimkuhler B,Skeel R D.Symplectic numerical integrators in constrained Hamiltonian systems[J].J Comp Phys,1994,112(1):117—125. doi: 10.1006/jcph.1994.1085
|
[11] |
Baumgarte J W.A new method of stabilization for holonomic constraints[J].ASME Journal of Applied Mechanics,1983,50(4):869—870. doi: 10.1115/1.3167159
|