Citation: | YANG Ming-ge, DENG Lei. Continuous Selection Theorems for Fan-Browder Mappings in Topological Spaces and Their Applications[J]. Applied Mathematics and Mechanics, 2006, 27(4): 439-446. |
[1] |
Browder F E.A new generalization of the Schauder fixed point theorem[J].Math Ann,1967,174(2):285—290. doi: 10.1007/BF01364275
|
[2] |
Browder F E.The fixed point theory of multi-valued mappings in topological vector spaces[J].Math Ann,1968,177(2):283—301. doi: 10.1007/BF01350721
|
[3] |
DING Xie-ping,Kim W K,Tan K K.A selection theorem and its applications[J].Bull Austral Math Soc,1992,46(2):205—212. doi: 10.1017/S0004972700011849
|
[4] |
DING Xie-ping.Continuous selection theorem, coincidence theorem and intersection theorem concerning sets with H-convex sections[J].J Austral Math Soc,Ser A,1992,52(1):11—25. doi: 10.1017/S1446788700032833
|
[5] |
Ben-El-Mechaiekh H, Deguire D, Granas A. Points fixes et coincidences pour les functions multivaques(applications de Ky Fan)[J].CR Acad Sci Paris,1982,295:337—340.
|
[6] |
Ben-El-Mechaiekh H, Deguire D, Granas A. Points fixes et coincidences pour les functions multivaques II(applications de type φ et φ*)[J].CR Acad Sci Paris,1982,295:341—381.
|
[7] |
Yannelis N C, Prabhakar N D. Existence of maximal elements and equilibria in linear topological spaces[J].J Math Econom,1983,12(2):233—245. doi: 10.1016/0304-4068(83)90041-1
|
[8] |
Horvath C D. Contractibility and general convexity[J].J Math Anal Appl,1991,156(2):341—357. doi: 10.1016/0022-247X(91)90402-L
|
[9] |
Horvath C D. Extension and selection theorems in topological spaces with a generalized convexity structure[J].Ann Fac Sci Toulouse,1993,2(2):253—269. doi: 10.5802/afst.766
|
[10] |
Park S.Continuous selectin theorems in generalized convex spaces[J].Numer Funct Anal Optimiz,1999,20(5/6): 567—583. doi: 10.1080/01630569908816911
|
[11] |
Park S.New topological versions of the Fan-Browder fixed point theorem[J].Nonlinear Anal,2001,47(1):595—606. doi: 10.1016/S0362-546X(01)00204-8
|
[12] |
WU Xian,SHEN Shi-kai.A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications[J].J Math Anal Appl,1996,197(1):61—74. doi: 10.1006/jmaa.1996.0007
|
[13] |
Park S, Kim H. Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173—187. doi: 10.1006/jmaa.1996.0014
|
[14] |
Park S, Kim H. Foundations of KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(3):551—571. doi: 10.1006/jmaa.1997.5388
|
[15] |
Lin L J, Park S.On some generalized quasi-equilibrium problems[J].J Math Anal Appl,1998,224(1):167—181. doi: 10.1006/jmaa.1998.5964
|
[16] |
YU Zenn Tsuen, LIN Lai-jiu.Continuous selection and fixed point theorems[J].Nonlinear Anal,2003,52(2):445—455. doi: 10.1016/S0362-546X(02)00107-4
|
[17] |
DING Xie-ping,Park J Y.Collectively fixed point theorem and abstract economy in G-convex spaces[J].Numer Funct Anal Optimiz,2002,23(7/8):779—790. doi: 10.1081/NFA-120016269
|
[18] |
DENG Lei,XIA Xia.Generalized R-KKM theorems in topological space and their applications[J].J Math Anal Appl,2003,285(2):679—690. doi: 10.1016/S0022-247X(03)00466-9
|
[19] |
Horvath C D.Contractibility and generalized convexity[J].J Math Anal Appl,1991,156(2):341—357. doi: 10.1016/0022-247X(91)90402-L
|
[20] |
Park S.Fixed points of admissible maps on generalized convex spaces[J].J Korean Math Soc,2000,37(4):885—899.
|
[21] |
DING Xie-ping.Coincidence theorems involving better admissible mappings and Φ-mappings in G-convex spaces[J].四川师范大学学报(自然科学版),2002,25(3):221—225.
|
[22] |
DING Xie-ping. Coincidence theorems in topological spaces and their applications[J].Appl Math Lett,1999,12(7):99—105. doi: 10.1016/S0893-9659(99)00108-1
|