MA Jian-wei, YANG Hui-zhu. Multiresolution Symplectic Scheme for Wave Propagation in Complex Media[J]. Applied Mathematics and Mechanics, 2004, 25(5): 523-528.
Citation: MA Jian-wei, YANG Hui-zhu. Multiresolution Symplectic Scheme for Wave Propagation in Complex Media[J]. Applied Mathematics and Mechanics, 2004, 25(5): 523-528.

Multiresolution Symplectic Scheme for Wave Propagation in Complex Media

  • Received Date: 2002-09-11
  • Rev Recd Date: 2003-09-26
  • Publish Date: 2004-05-15
  • A fast adaptive symplectic algorithm named multiresolution symplectic scheme (MSS) was first presented to solve the problem of the wave propagation in complex media, using the symplectic scheme and Daubechies. compactly supported orthogonal wavelet transform to respectively discretise the time and space dimension of wave equation. The problem was solved in multiresolution symplectic geometry space under the conservative Hamiltonian system rather than the traditional Lagrange system. Due to the fascinating properties of the wavelets and symplectic scheme, MSS is a promising method because of little computational burden, robustness and reality of long-time simulation.
  • loading
  • [1]
    钟万勰.弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.
    [2]
    XU Xin-sheng, ZHONG Wan-xie, ZHANG Hong-wu.The Saint-Venant problem and principle in elasticity[J].Int J Solids Structures,1997,34(22):2815—2827. doi: 10.1016/S0020-7683(96)00198-9
    [3]
    Hirono I, Lui W W,Yokoyama K. Time-domain simulation of electromagnetic field using a symplectic integrator[J].IEEE Trans Microwave and Guided Wave Lett,1997,7(9):79—281.
    [4]
    马坚伟,徐新生,杨慧珠,等. 平面流体扰动与哈密顿体系[J].应用力学学报, 2001, 18(4): 82—86.
    [5]
    Beylkin G. On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer Anal,1992,29(6):1716—1740. doi: 10.1137/0729097
    [6]
    MA Jian-wei,ZHU Ya-ping,YANG Hui-zhu.Multiscale-combined seismic waveform inversion using orthogonal wavelet transform[J].Electron Lett,2001,37(4):261—262. doi: 10.1049/el:20010131
    [7]
    马坚伟,杨慧珠.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415—1420.
    [8]
    Dahmen W. Wavelet methods for PDEs-some recent developments [J].J Comput Appl Math,2001,128(1/2):133—185. doi: 10.1016/S0377-0427(00)00511-2
    [9]
    Holmstrom M. Solving hyperbolic PDEs using interpolating wavelets [J]. SIAM J Sci Comput,1999,21(2): 405—420. doi: 10.1137/S1064827597316278
    [10]
    Vasilyev O, Bowman C. Second-generation wavelet collocation method for the solution of PDEs[J].J Comput Phys,2000,165(2): 660—693. doi: 10.1006/jcph.2000.6638
    [11]
    Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(2): 473—499. doi: 10.1006/jcph.1999.6372
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2652) PDF downloads(562) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return