Rajneesh Kumar, Praveen Ailawalia. Deformation Due to Time Harmonic Sources in Micropolar Thermoelastic Medium Possessing Cubic Symmetry With Two Relaxation Times[J]. Applied Mathematics and Mechanics, 2006, 27(6): 690-700.
Citation: Rajneesh Kumar, Praveen Ailawalia. Deformation Due to Time Harmonic Sources in Micropolar Thermoelastic Medium Possessing Cubic Symmetry With Two Relaxation Times[J]. Applied Mathematics and Mechanics, 2006, 27(6): 690-700.

Deformation Due to Time Harmonic Sources in Micropolar Thermoelastic Medium Possessing Cubic Symmetry With Two Relaxation Times

  • Received Date: 2005-05-23
  • Rev Recd Date: 2005-08-18
  • Publish Date: 2006-06-15
  • The response of a micropolar thermoelastic medium possessing cubic symmetry with two relaxation times due to time harmonic sources has been investigated.Fourier transform was employed and the transform was inverted by using a numerical inversion technique.The components of displacement,stress,microrotation and temperature distribution in the physical domain were obtained numerically.The results of normal displacement,normal force stress,tangential couple stress and temperature distribution were compared for micropolar cubic crystal and micropolar isotropic solid.The numerical results were illustrated graphically for a particular material.Some special cases were also deduced.
  • loading
  • [1]
    Biot M.Thermoelasticity and irreversible thermodynamics[J].J Appl Phys, 1956,27(3):240—253. doi: 10.1063/1.1722351
    [2]
    Muller J M.The coldness of universal function in thermoelastic bodies[J].Arch Ration Mech Anal,1971,41(5):319—332.
    [3]
    Green A E,Laws N.On the entropy production inequality[J].Arch Ration Mech Anal,1972,45(1):47—53.
    [4]
    Green A E,Lindsay K A.Thermoelasticity[J].J Elasticity,1972,2:1—5. doi: 10.1007/BF00045689
    [5]
    Suhubi E S.Thermoelastic solids[A].In:Eringen A C,Ed.Continuum Physics[C].Vol 2.Part 2,Chapter2. New York :Academic Press, 1975.
    [6]
    Eringen A C.Foundations of Micropolar Thermoelasticity[M].Intern Cent for Mech Studies. Course and Lectures.No 23. Wien:Springer-Verlag,1970.
    [7]
    Nowacki M.Couple-stresses in the theory of thermoelasticity[A].In: Parkus H,Sedov L I,Eds.Proc IUTAM Symposia[C].Vienna: Springer-Verlag, 1966, 259—278.
    [8]
    Iesan D.The plane micropolar strain of orthotropic elastic solids[J].Arch Mech,1973,25(3):547—561.
    [9]
    Iesan D.Torsion of anisotropic elastic cylinders[J].Z Angew Math Mech,1974,54(12):773—779. doi: 10.1002/zamm.19740541104
    [10]
    Iesan D. Bending of orthotropic micropolar elastic beams by terminal couples[J].An St Uni Iasi,1974,20(2):411—418.
    [11]
    Nakamura S,Benedict R, Lakes R. Finite element method for orthotropic micropolar elasticity[J].Internat J Engg Sci,1984,22(3):319—330. doi: 10.1016/0020-7225(84)90013-2
    [12]
    Kumar R, Choudhary S. Influence and Green's function for orthotropic micropolar continua[J].Archives of Mechanics,2002,54(4):185—198.
    [13]
    Kumar R, Choudhary S. Dynamical behavior of orthotropic micropolar elastic medium[J].Journal of Vibration and Control,2002,8(8):1053—1069. doi: 10.1177/107754602029582
    [14]
    Kumar R, Choudhary S. Mechanical sources in orthotropic micropolar continua[J].Proc Indian Acad Sci(Earth Plant Sci),2002,111(2):133—141.
    [15]
    Kumar R, Choudhary S. Response of orthotropic micropolar elastic medium due to various sources[J].Meccanica,2003,38(3):349—368. doi: 10.1023/A:1023365920783
    [16]
    Kumar R, Choudhary S. Response of orthotropic micropolar elastic medium due to time harmonic sources[J].Sadhana,2004,29(1):83—92. doi: 10.1007/BF02707002
    [17]
    Minagawa S, Arakawa K, Yamada M. Dispersion curves for waves in a cubic micropolar medium with reference to estimations of the material constants for diamond[J].Bull JSME,1981,24(187):22—28. doi: 10.1299/jsme1958.24.22
    [18]
    Kumar R, Rani L.Elastodynamics of time harmonic sources in a thermally conducting cubic crystal[J].Internat J Appl Mech Engg,2003,8(4):637—650.
    [19]
    Kumar R, Ailawalia P. Behaviour of micropolar cubic crystal due to various sources[J].Journal of Sound and Vibration,2005,283(3/5):875—890. doi: 10.1016/j.jsv.2004.07.001
    [20]
    Kumar R, Ailawalia P. Deformation in micropolar cubic crystal due to various sources[J].Internat J Solids Struct,2005,42(23):5931—5944. doi: 10.1016/j.ijsolstr.2005.01.022
    [21]
    Press W H, Teukolsky S A, Vellerling W T,et al.Numerical Recipes[M].Cambridge: Cambridge University Press,1986.
    [22]
    Eringen A C. Plane waves in non-local micropolar elasticity[J].Internat J Engg Sci,1984,22(8/10):1113—1121. doi: 10.1016/0020-7225(84)90112-5
    [23]
    Dhaliwal R S, Singh A.Dynamic Coupled Thermoelasticity[M].New Delhi, India:Hindustan Publication Corporation,1980,726.
    [24]
    Eringen A C. Linear theory of micropolar elasticity[J].J Math Mech,1966,15(6):909—923.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2954) PDF downloads(532) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return