YUAN Yu-bo, PU Dong-mei, LI Shu-min. Bifurcations of Travelling Wave Solutions in Variant Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2006, 27(6): 716-726.
Citation: YUAN Yu-bo, PU Dong-mei, LI Shu-min. Bifurcations of Travelling Wave Solutions in Variant Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2006, 27(6): 716-726.

Bifurcations of Travelling Wave Solutions in Variant Boussinesq Equations

  • Received Date: 2003-12-20
  • Rev Recd Date: 2006-03-06
  • Publish Date: 2006-06-15
  • The bifurcations of solitary waves and kink waves for variant Boussinesq equations were studied by using the bifurcation theory of planar dynamical systems.The bifurcation sets and the numbers of solitary waves and kink waves for the variant Boussinesq equations are presented.Several types explicit formulas of solitary wave solutions and kink wave solutions are obtained.In the end, several formulas of periodic wave solutions are presented.
  • [1]
    LI Ji-bin,ZHANG Li-jun.Bifurcations of travelling wave solutions in generalized Pochhammer-Chree equation[J].Chaos,Solitons and Fractals,2002,14(4):581—593. doi: 10.1016/S0960-0779(01)00248-X
    [2]
    LI Ji-bin,LIU Zheng-rong.Travelling wave solutions for a class of nonlinear dispersive equations[J].Chinese Ann Math,Ser B,2002,23(3):397—418. doi: 10.1142/S0252959902000365
    [3]
    张解放.变更Boussinesq方程和Kupershmidt方程的多孤子解[J].应用数学和力学,2000,21(2):171—175.
    [4]
    YAN Zhen-ya,ZHANG Hong-qing.New explicit and exact travelling wave solutions for a system of the variant Boussinesq equations in mathematical physics[J].Physics Letters A,1999,252(6):291—296. doi: 10.1016/S0375-9601(98)00956-6
    [5]
    WANG Ming-liang.Solitary wave solutions of variant Boussinesq equations[J].Physics Letters A,1995,199(3):169—172. doi: 10.1016/0375-9601(95)00092-H
    [6]
    Andronov A ,Leontovich E A,Gordon I I,et al.Theory of Bifurcations of Dynamic Systems on a Plane[M].New York:Wiley,1973.
    [7]
    Chow S N,Hale J K.Method of Bifurcation Theory[M].New York:Springer-Verlag, 1981.
    [8]
    Debnath L.Nonlinear Partial Differential Equations for Scientists and Engineers[M].Boston:Birkhauser, 1997.
    [9]
    Guckenheimer J,Holmes P J.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1983.
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.3 %FULLTEXT: 19.3 %META: 80.0 %META: 80.0 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %China: 0.7 %China: 0.7 %上海: 0.6 %上海: 0.6 %北京: 1.9 %北京: 1.9 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %台州: 0.4 %台州: 0.4 %哥伦布: 0.2 %哥伦布: 0.2 %弗吉: 0.3 %弗吉: 0.3 %张家口: 3.3 %张家口: 3.3 %新奥尔良: 0.3 %新奥尔良: 0.3 %昆明: 0.6 %昆明: 0.6 %杭州: 0.2 %杭州: 0.2 %武汉: 0.1 %武汉: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %深圳: 0.2 %深圳: 0.2 %湖州: 0.1 %湖州: 0.1 %石家庄: 0.5 %石家庄: 0.5 %芒廷维尤: 5.2 %芒廷维尤: 5.2 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 78.1 %西宁: 78.1 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %金华: 0.2 %金华: 0.2 %其他China上海北京南京南宁台州哥伦布弗吉张家口新奥尔良昆明杭州武汉洛杉矶深圳湖州石家庄芒廷维尤苏州衢州西宁西安贵阳金华

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3037) PDF downloads(625) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return